Yib’'s Guideto MOOing

Getting the M ost from

Virtual Communities on the lnter net

Elizabeth Hess

Table of Contents

L 0= 1Yo o TP iii
ACKNOWIEAGEIMENTS. ...t e e e et e et eeeees Y
[10 0T [BTe: (o o WP 1
Part | FUNAAMENLEAIS.......cooiiiiiiii et 5
(@ =T (= G R I TN = xS 7
GELIING SEAMEM. ... et e et e et e e eee 7
BasiC COMMUNICALIONS........cuuiiiiieii et et e et e et e et eaaaaaenns 9
Requesting a Character and Getting Settled 1Nc.oooiiiiiiiiiii 14
Chapter 2 —How DO They DO That?........couiiiiicee e e e e e 21
(< Y= 21
A Very Brief Introduction t0 ODJECES........couuiiiiiiieei e 21
Exploring an Object-Oriented WOrId............ooouiiiiiii e 22
Moving Around iN @MOO ... 25
The Give and Take of a Multi-User ENVIironmentcooovviiiiiieiiineciiieeeeeeenn 28
Chapter 3—What's Going ON, HEIE? ..o 37
(@] o)1= o £ PP UPTPPT 37
Y101V e @ o T =" ox £ 38
FEALUIE ODJECLS.eeeviiee ittt e et e e et e e e 41
Play@r ClaSSES. ... et 43
SELHING IMESSAOES. ... ettt et ettt a e e 46
Chapter 4 — Using the Mail System and the Eitors.............cc.ccooiiiiiiiiiiiin e, 51
Lo [aTo 81V - 51
Sending Mail (and getting a start on using the in-MOO editors)ccoceeeenneee. 57
M@ OPLIONS. ...ttt et et e et e et e e ea e e et e e et e eanaee 59
USINg the iNn-MOO EItOrS........civiiiiiicii e e e e e e e e e 66
Chapter 5 — Extending the Virtual Reality: Building...........ccooooiviiiiiiiiin e 79
(@Y7 Y= PP 79
Room Integration and EXit MESSAgES. ccuuuiiiiiiiiiiei e eae e 94
Determining a Room or Object’s Contents Definitivelyccoooviiiiiiiiinen, 98
Chapter 6 — ProgramiMing........c...ieiiioieeeeie e e e e e e e e e e e e e e e eeanns 101
A Brief Overview of What it Isand How it All WOrKS........cccoovviiiiiiiiiiiiiiieceeen, 101
Yib's Pet Rock: A Programming Tutorial for Beginners...........ccooeveuiiiiiiiiiineeinee. 108
MOO Programming REFEIENCE............oiiiiiiii e 156
Part I1 LambdaM OOccooiiiiiiiiii e 173
Chapter 7 — Yib’'s Guide To Interesting Places............cooiiiiiiiiiniiii e 175
Chapter 8 — LambdaM OO-Specific Reference Informationccc.ccoevviiiiiineeann. 217
A Short Compendium of LambdaM OO Feature Objects............coovviiiiiiniiiineennn. 217
Popular LambdaMOQO Player Classes.........ccuveviieiiiiiiiiieeiie e 226
An Overview of LambdaM OO’ s Political System, and How to Use lt................... 232
GlOSSANY OF TOIMNIS.. ..ttt ettt e e e e eaan s 243
Conversational Typing Abbreviations............coovoiiiiiii e 255
Appendix A —Summary of COmMMANAS............couuiiiiiieiiiiici e 259
Appendix B —Verbsin $ULIIS PaCckages.coviiieiiiiiiiiiiiiiieeeeeeee e 293
Appendix C — Text of “LambdaM OO Takes a New Direction” (LTAND) 303
Appendix D — Text of “LambdaM OO Takes Another Direction” (LTAD).................. 307

Appendix E — A Compendium of LambdaM OO Ballots
Bibliographycoooiiiiiiii
INAEX .

Foreword

Yib, the author of this volume, needs little introduction to those who participate
in the virtual world of LambdaMOO. She is a familiar figure to both newbies and
experienced MOOers as a wizard (administrator) on various MOOSs, as a provider of
advice and support to those interested in learning about MOQing, as a creative and
industrious programmer, and as a witty and wise contributor to the social life of the
communities in which she participates. Instead, | will use this foreword to say a few
words about MOOs and about the origins of this excellent introduction to them.

For those unfamiliar with these virtual worlds, a MOO is a type of program that
permits multiple users (or players or participants), typically from widely dispersed
sites, to access a shared database simultaneously, via telnet or a client program, and
to communicate and interact synchronically and asynchronically. The environment
is characterized by a spatial metaphor and an architectural motif. Because of these
features, Pavel Curtis, the founder of LambdaMOO, has described it as “an
electronically- represented ‘place’ that users can visit.”

A MOO isaworld of words. Participants describe themselves (or, more precisely,
the characters they control) and the objects they create, and it is the text of these
descriptions that players see when they “look”™ at one another and at the other
objects they encounter within the virtual environment. Users act and interact with
one another by typing — the objects they create and manipulate and the messages
they send and receive appear as words scrolling down a screen. The users who create,
name, and describe objects may also program them to “do” something when an
appropriate command is given, each object “responding” to a command implied in
its description.

In MOQOs, players communicate and interact with one another in various ways.
They “talk” by typing a command and a message appears as text on their computer
monitors. Players can also depict themselves as gesturing or emoting by typing a
command and a message that displays nonverbal actions. To participate even
minimally in a virtual world like LambdaM OO, it is necessary to learn the basic
commands that enable communication and interaction in it. And to partake more
fully of the possible experiences there, a player needs to master a more advanced set
of commands.

For many years, | have taught courses about the ways in which people behave
online, especially in virtual environments like MOQOs, and as part of those courses, |
have asked my students to enter into the life of LambdaMOO. They are expected to
establish characters there and to learn about the community by becoming
participant-observers in it. They are asked to communicate and interact with other
players, and, as do other participants, they often form friendships with other
MOOQers. Some even become avid programmers. For these experiences, the students
must learn the basics of MOQOing and that is how Yib’'s Guide to MOOing came into
existence. At my invitation, Yib began to participate in the online meetings of my
classes, responding to students questions about how to communicate and navigate in

LambdaMOO. She also helped them when they were logged into the community,
responding to a barrage of requests for help.

In the summer of 1999, Yib audited my classin person. AsYib putsit, “I taught
them about MOOQing; they taught me about anthropology.” As questions about
MOOing came up, Yib would answer them briefly in class, then, later, she would post
a more in-depth answer to a mailing list that the students could read at their leisure.
This collection of essays was eagerly read by those taking the courses; it became the
students MOO bible. The topics ranged from technical questions to socia
conventions to historical background about some of the major developments in the
social and political life of the community. One day | said to her, “You know, you
have abook to write,” and she said, “Yes, | do.” Theresult is Yib's Guide to MOOing.

For both newbies and veteran players, Yib's Guide to MOOing offers the clearest
and most comprehensive explanation of the concept of a MOO and overview of
MOO commands and customs. It has illuminated the world of MOQOing for my
students and me, and facilitated our participation in and enjoyment of the life of
LambdaMOO. We have al benefited greatly from her contribution. And now the
Guide is available to a wider audience. | fully expect that others will get as much
satisfaction and pleasure from her efforts as we have. Everyone interested in
participating in LambdaMOO and in virtual worlds like it owes Yib a debt of
gratitude.

Tower
February 25, 2003

Acknowledgements

A MOO is a gift economy, and myriad people have given unstintingly of their
time, energy, and talent over the years to make MOOs what they are today. This
book is my tribute to those who have made meaningful the phrase user extensible.

Any mistakes are solely my own.

The following people and M OO players have been of particular help:

Judy Anderson (yduJ)

Pavel Curtis

David Jacobson

Peter “ Euphistophel es, Source Error Supreme” St.John
Chris Stacy

Audrey
Barth
Bartlebooth
Bear(tm)
Bits

Boo

Doci

eep

Klaatu
mockturtle
Nim
Ostrich

Pax

Shmool
Tartan_Guest
Tower
Werebull

The LambdaM OO wizards
B.

I ntroduction

A MOO is a computer program that enables people to interact with one another
in avariety of ways through the use of text. One logs on (as one might log on to any
computer system), initiates action with any of a very wide variety of typed
commands, and reads the results as text displayed on one's screen. Often, the
commands one types cause text to appear on the screens of other people who are
using the program at the same time, and, similarly, commands that others type may
cause text to be displayed to one's own screen — giving rise to interpersona
interaction.

The text that one sees immediately after logging on usually includes the
description of alocation, often a room within a building (though not necessarily so).
One facet of MOOs is that each one is a textually represented world, such as one
might encounter in a play, a novel, or a non-fiction work about a particular time and
place. Within this represented world, called the virtual reality or VR, are many rooms

and other places that one can explore using commands such as “nort h”, “out ”, and
“enter cottage”, and objects (presented as textual descriptions) that one can
manipulate using commands such as “open box”, “l ook in box”, and “t ake
surprise prize from box”. When you type one of these commands, appropriate
text concerning the object will appear on your screen. Each person logged on to the
MOOQO also appears as an object represented within the MOOQO’s frame story or theme.
Many of the available commands are used to depict on€e’ s represented self as saying or
doing various things within the represented scene. It’s something like improvisatory
theater, except that you type what you would say or do instead of saying things out
loud or actually gesturing — with the added fillip that because it's typed text rather
than physical action, you can as easily depict yourself as walking across the ceiling as
dropping a handkerchief.

Like persons performing in an improvised theater scene, the users of a MOO —
usually called players, for historical reasons — can interact with one another on a
variety of levels. They can behave as if the stage set, props, and costumed characters
are what they appear to be. In the theater, one might refer to this as acting “in
character”. On a MOO, we would say that an action or statement was “consistent
with the virtual redlity.” At any time, though, an actor can break from her role and
speak or act instead as the person performing the role. In a rehearsal, she might do
this to discuss a point of how the scene should be played; while not on stage, she
might ask another player if he would like to go out for coffee later. During a
performance, she might peek into the audience to see how full the house is. On a
MOO, everyone is both a participant in the virtual reality (aplayer) and a person who
islogged onto and using the MOO computer program (atypist).

Actions (typed commands) which are not consistent with or not intended to
function as part of the MOQO’s virtual readlity are referred to as non-VR or meta-VR
actions. These actions, while outside the MOO’s frame story, virtual reality, or
theme, are still done within the MOO itsdlf, that is, while logged on and typing
commands, and they are as much a part of MOOing as actions that are consistent
with the virtual reality. Some examples would include typing a command to see who

€else was logged on to the MOOQO at a particular point in time, a command to change
the description of one’s represented self, or a command to add a new room or object
to those already available for use by oneself or by other players. MOQO'’s are user-
extensible. That the players within a MOO are themselves able to modify and extend
the virtual reality is a central feature of what MOQOs are for and about, and sets MOQOs
apart from chat rooms, web sites, and other virtual environments.

Much of this book concerns itself with how to investigate and manipulate the
MOQO’ s virtua reality underpinnings. Let me begin, then, by introducing afew terms.
The MOO server is the program that runs on a host computer, whose job it is to
handle the connection process, receive typed commands from users, cause those
typed commands to be executed appropriately (much more on this later), and display
resulting text to users’ screens. The MOO database is a structured record of all the
represented items within the virtual reality and all their technical underpinnings as
created and extended by MOO users. A MOO'’s database is divided into objects, which
are data constructs that are used both to represent things in the virtual reality and in
the meta-VR. By this| mean that an object might represent a couch that you would
sit on, in the context of the virtual reality — or it might not represent anything in the
VR but serve as a repository of commands for extending the VR. Every object has
associated with it a set of attributes, called properties, which are named pieces of data
that contain information about that object (e.g. its name, its location, etc.). Some
properties are common to all objects, while others are specific to certain kinds of
objects: for example, objects that represent players (people) have a property
associated with them indicating gender, while objects that represent pieces of
furniture typically do not. In addition, objects also have associated with them sets of
coded instructions, called verbs, that control their behavior. By creating new objects
within the M OO, and adding interesting properties and useful verbs to these objects,
every player can expand the virtual reality. Players adept at programming can even
create virtual tools designed to modify the virtual reality.

The objective of this book is to provide a comprehensive yet comprehensible
explanation of the many commands, both VR and non-VR, available to users of
MOOs, in hopes of helping people learn the ropes as quickly as possible and get the
most from their MOQOing experience. Part | of the book focuses on commands that
are common to al MOOs based on a particular common starting database called
“LambdaCore’. Part |l provides information specific to LambdaM OO, which is the
original and largest MOO in existence today (having between 3000 and 4000
registered users at any given time).

A note about typography: thisis partly a book about words that people type into
a computer program and words that a computer program prints on people’ s screens.

In the beginning, for clarity, if | specify something that you are to type in, | will
put it on its own line, thus:

connect Cuest
In the interest of space, though, | sometimes place text that you are to type (or

text that the computer displays) within a paragraph, thus: connect Guest.

I use angle brackets <> as a placeholder for specific information that you fill in
yourself. For example, if | told you to type:

say H, ny name is <your nanme>.

2 Introduction

and your name were Sally, then you would type:
say H, ny name is Sally.

A note about the “Spivak” pronouns | use in this book: The mathematician
Michael Spivak developed a set of gender-neutral singular pronouns for use in his
books. They are popularly used on LambdaM OO when one doesn’t know a person’s
gender, or when one is referring to a generic person such as “the reader” or “a
MOQer”. They correspond to the familiar pronouns as follows:

E: He/She

Em: Him/Her

Eir: His/Her

Eirs: His/Hers
Emsdlf: Himself/Hersel f

Any other terms may be found in the glossary at the end of the book.

One last bit of reassurance: a MOO is a very rich interactive environment,
providing thousands of different commands that enable people to use the MOO in
many different ways. Because the commands are so many and so varied, the initial
learning curve can seem quite steep, and people who aren’'t comfortable using
computer programs whose interface is strictly text may feel daunted. Please be
assured that MOOs are intended to be arenas of exploration, and that while you may
find yourself confused or uncertain on some occasions, there is nothing you can do
that will mess things up irrevocably. You will learn as much (and hopefully more)
from your own experimentation as you will from this book. Go ahead: Try things!

Introduction 3

Part |

Fundamentals

Chapter 1 — The Basics

Getting Started

Learning is active. No amount of reading about MOOQOs and MOQing can convey
what it’s really like as well as jumping in and doing it! The goal of this section is to
present the basics of connecting to a MOO and starting to get your bearings.

First, you must connect to the MOO. The most primitive way to do so is using
telnet. The syntax, from a command line host computer, is

tel net <MOO nane> <port nunber>
For example:

tel net yib.noo.nud.org 7777
or

tel net | anbda. noo. mud. org 83888

Some telnet applications may have you type the MOO name and port number
into adialog box, then select “Connect” or “OK”.

Thisis sometimes referred to as raw telnet, because there is no additional software
between you and the MOO. In some cases, the backspace key doesn’t work while
using raw telnet. Sometimes, even the text you type doesn’t display! (Some telnet
programs have menus to adjust these things.) Also with telnet, if text is sent from the
MOO to your screen while you are typing (and it often is), the text will appear right
in the middle of the line you are typing, and things get very confusing, very quickly.
For this reason, most people try to obtain a kind of program known as a MOO (or
MUD) client. There are a variety of client programs available, and your choice of a
client will depend partly on what kind of machine or operating system you are using
to connect to the MOO. Client programs are not part of the MOO per se, but greatly
enhance one’'s MOQOing experience. | strongly recommend them.

The most important thing that a client does is separate, in some way, the text
that you are in the middle of typing from text that the MOO is sending to your
screen. Some clients have a small window at the bottom of a main window; others
keep shifting your line down and inserting received text above it. Therest is frosting:
Some show the text that you type in bold face, for example. Most let you use a scroll
bar or other command to review previously-displayed text; some provide fancy
editing capability, and so forth, but the main thing is to be able to see straight (so to
speak). Some well-known client programs include Pueblo, tkM OO, MUDDweller, and
emacs with mud.el. To find a client that's compatible with your computer, |
recommend using an Internet search engine such as www. googl e. comand searching
for MOO clients.

The first time you visit a M OO, you will connect as a guest. Guests have limited
privileges (they can’'t receive MOOmail, for example), but are equipped to do all the
basics of communicating and getting around. It's usually a good ideato visit a given

MOO a few times as a guest before requesting a character, to get a feel for the place
and the people and then decide if you actually want to get a character there.
Characters can select their own names, and usually have at least limited building
privileges.

Please read the welcome screen.

After doing so, type:

connect guest?
If you do use a client, you will probably have to specify the MOO’s address in a

set-up window. The specifics of how to do this are different for each client and
beyond the scope of this book.

A good place to find out about many of the MOOsthat are available is Rachel’s
Super MOO Ligt, at:
http://ci nemaspace. ber kel ey. edu/ ~rachel / ool i st/i ndex. htm .

On most MOOs there will be some information that you are invited and

requested to read when you first connect. First, you may be instructed to type hel p
at any time for assistance. You may then be informed that there is new news, and

instructed to type news or news new to read it.> After that (on LambdaMOO), you

1 Since you are logging in anonymously, you may be asked a few additional questions. Take the time
to read and answer them.

Most MOOs permit more than one guest to be logged on simultaneously. Your actual guest name
might be something like “Green_Guest”, or “Blue_Guest”.

21f you don't use a client program, there are certain commands that you will want to be aware of
from the very start.
First, you will need to specify the size (height in lines and width in characters) of the screen or
window you are using. To specify the height of your screen, type
@agel en <nunber >

Many screens have 24 lines.

To specify the width of your screen, type
@i nel en <nunber >

Many screens have aline length of 80 characters; if yours does but things still look funny, specify one
fewer characters than are actually displayed on aline.

Finally, type
@wap on

Thiswill prevent words from being broken in the middle across line breaks.
If you do these things, then when your screen gets full, you will be prompted to type @ror e to cause
more text to be displayed.

If, after getting a character (see the section on requesting a character and getting settled in, page 14),
you switchfrom using raw telnet to using a client, you will probably need to type the following:

@agel en 0
@wrap of f

Doing this will prevent the MOO from prompting you to type @ror e every time your screen gets full
(because now the client lets you scroll back). Most clients separate lines at word boundaries, so typing

8 Basics

http://cinemaspace.berkeley.edu/~rachel/moolist/index.html

areinvited to type @ ut ori al for an introduction to basic MOOing, and requested to
type hel p manners and read the text presented if you have not already done so.
This is an awful lot of stuff to read. | recommend you proceed in the following
sequence:

Skim hel p manners_or heI_F rul es or any indicated text about the way you
are expected to behave. There will likely be several things in it that may not make

sense at first, but MOOers will often expect you to have read it anyway. On the first
pass, your goal should be to get what you can from it, note the various kinds of things
that arein it, for future reference, and to realize that the community does have formal
expectations of its members and guests.

If atutorial isindicated, do that next.

Then, type hel p just to see the basics of the online help system. If atopic grabs
your interest, go ahead and read about it by typing:

hel p <t opi c>

If there is a newspaper, read it, by typing news. If an obvious exit is indicated,
try it. Welcomel!

When you are ready to disconnect from the MOO, type:
@ui t

Basic Communications

This section explains various ways of interacting with other people on a MOO.

Say

The most fundamental communication command on a MOO is the say
command, and thisiswhat to use if you want to say something to someone who isin
the sameroom asyou. If Yib types:

say Hell o.

Then Yib will see on her screen:
You say, "Hello."

And everyone else in the room with Yib will see on eir screen:
Yib says, "Hello."

@wr ap of f relievesthe MOO itself of that task and may speed up the MOQ' s response time slightly, which
isdesirable.

Basics 9

The say command is so basic, and used so much, that it has an abbreviation
which is the double-quote character ("). If Yib wants to say that she likes to tap
dance, she can type:

"I like to tap dance.

and she will see on her screen:
You say, "I like to tap dance."

and everyone else in room when Yib says thiswill see on eir screen:
Yib says, "I like to tap dance."

Notice that when using this form of the command, you do not type a close-quote
character at the end. The system appends one automatically.

Emote

Sometimes you might want to express something non-verbal, such as afeeling or
a gesture. It might seem awkward to say, “I feel happy and am smiling.” For this
situation, use the emote command. This command will prepend your name to
whatever you type after it. For example, if Yib types:

enote feels happy.
Everyone in the room (including Yib) will see on eir screen the line:
Yi b feels happy.
Notice that Yib typed her sentence in the third person. If she had typed:
enote feel happy.
Then everyone would have seen the line:
Yi b feel happy.

The emote command, too, is used so much that it has a single-character
abbreviation, which isthe colon (:). So Yib could type:
:feels like dancing.

and everyone in the room (including Yib) would see on eir screen:
Yib feels |ike dancing.

There is a difference between emoting things and actually doing things, i.e.
actually interacting with objects on the MOO. Suppose Yib is holding an object
called “linen handkerchief”. If Yib emotestheline:

:drops linen handkerchi ef.
Everyone in the room would see the text line:
Yi b drops |inen handkerchi ef.

10 Basics

But Yib would not in fact have dropped it. If one were to look at the room Yib
was in at the time, one would not see the handkerchief there. If Yib had instead
typed:

drop |inen handkerchi ef

then the object, | i nen handker chi ef , would actually move from Yib to the room
that Yib was in. This is a fundamental concept (though perhaps a subtle one,
especially at first): whether one “merely generates text”, or whether one causes a
change in the database, e.g. changes the location of an object. Yib could emote
dropping an elephant, or lifting one, and the text would print out, regardiess of
whether or not there actually was an elephant in the vicinity.

A special form of enot e is the double colon (: :) It isjust like a regular enot e
except that a space doesn’t appear after your name. A typical usage would be:

::'s new hat is of truly astonishing di mensions!

Yib's new hat is of truly astonishing di nensions!

Many MOOs have a collection of short cut commands such as wave <person>
or hug <per son>, which can be used for frequently-depicted actions such as waving,
hugging and so forth. People who get spoiled with these short cuts often neglect
emote, but it remains one of the single most flexible and expressive commands on
the MOO.

Directed Say

Typicaly, when a room has a large number of people in it, the conversation
tends to break up into several conversations going on at once. It's impractical to
listen to everyone talking at the same time, and people don't. On a MOOQO, every
utterance and gesture appears on a line by itself, so, in theory, one could keep up
with everything, even in a crowded, noisy room. In practice, however, MOO
conversations also tend to break up in crowded rooms, and it’s typical to follow what
one or a few people are saying and tune out the rest. To facilitate this, there is a
command that is generally referred to as directed say.* To direct a remark to a
particular person, begin your line of text with a dash (-), then, without typing a
space, type the name of the person you wish to address, then a space, then your
remark. For example, Barth might direct aremark to Yib by typing:

-Yib My, what a lovely hat you have on!
Everyone in the room (including Barth and Yib) would see the line:
Barth [to Yib]: My, what a lovely hat you have on!

3 Different MOOs may or may not provide this automatically to brand new players. LambdaMOO
does, using a kind of object called a feature object (FO). (Feature objects are explained in the section
beginning on page 41.)

Basics 11

Whisper

Y ou might want to communicate something to one person only, without others
in the room being aware of it. For this there is the whisper command. The syntax of
this command is dightly different than the other communications commands, in
that you have to put quotes around the text you wish to transmit. Here's an
example. Nim types:

whi sper "Meet me in the hot tub in two minutes." to Yib
Yib sees:

Ni m whi spers, "Meet nme in the hot tub in two mnutes."
Nim sees:

You whisper, "Meet ne in the hot tub in two mnutes.” to

Yi b.
No one €else in the room sees anything of this exchange.

Page

It’ s often the case that one wishes to communicate with someone who is logged
on but not in the same room. For this we have the page command. The syntax is
page <person> <nessage>. |f Boo were in aroom called A Quiet Place and
wanted to greet Yib from afar, she might type:

page Yib Hi! Been up to any m schief lately?
Yib would see:

You sense that Boo is looking for you in A Quiet Place.
She pages, "Hi! Been up to any mschief lately?"

Boo would see:
Your message has been sent.

Because this is virtual reality, and because the players themselves can change the
way it works, even simple commands like page can give fun and interesting results.
For example, Boo can adjust the text that appears in the first line that a person sees
when she pages em. For example, she might set it to say, “Boo tosses you a poison
dart with a message attached.” Yib can adjust the text that someone paging her sees
when the message is received. For example, she might set it to say, “Yib adjusts her
glasses and reads your message.” (How to do this is explained in the segment on
setting messages, beginning on page 46.)

12 Basics

Remote-Emote

Sometimes, instead of paging, one wants to gesture from afar, and the name

given to this is renpte-enote. The syntax for this command is +<pl ayer >
<text>. If Yib were on top of the observatory dome and wanted to wave to
Tartan_Guest from there, she would type:

+Tartan_QGuest waves.

Tartan_Guest would see:
(from On Top of the Cbservatory Done) Yib waves.

Yib would see:
Tartan_Guest has recei ved your enote.

Like emote, this command is very flexible, but doesn’'t actually do anything, i.e.
it doesn’t change the database. If | were to remote-emote to Klaatu:

+kl aat u hooks you with her fishing pole and reels you in!

Klaatu would see the text, but would not in fact be reeled in anywhere, and
would remain wherever he was. This distinction is important, because one could
make a fishing pole object, and endow it with verbs that moved other objects (e.g.
fish, or other players).

Channels

Channels on a MOO are kind of like channels on a CB radio. The idea is, you
tune to a given channel, and you and everyone else tuned to that channel can
communicate with one another even though you may all be in different locations.
One difference between a channel and a real CB radio is that with a real CB radio,
everyone present in the room can hear it. On a MOO, only those connected to a
channel can listen to it, even though others may be present in the room. There are
public channels that anyone can join, and private channels that have restricted
access. Channels are quite popular and many M OOs have them, though they are not
included as part of LambdaCore. Details on how to use channels on LambdaM OO
are given in the section on LambdaM OO Feature objects (see page 217).

Recording Communication

All of these commands (say, emote, directed-say, whisper, page, remote-emote
and communicating on channels) are examples of communication that occursin real
time, i.e., the information is received at the time of transmission rather than stored
for retrieval at alater time. In general, communication of this sort is of a transient
nature, although it is stored in the computer’s Random Access Memory (RAM) and is

Basics 13

protected by copyright' . Players can issue a command (@ar anoi d) to keep the
most recent severa lines available for closer inspection. Furthermore, many players

client programs save arbitrary numbers of lines which can be viewed in the client
window by scrolling back. It is also possible for players to save logs (transcripts) of
MOO sessions to afile on disk. In theory, only the guests and players in a particular
room are supposed to be privy to conversation that occurs in that room at that time,
but such israrely the case in practice. It istechnically possible for conversations to be
bugged. Occasional overt “bugging” is tolerated, (for example a player might
participate in a conversation remotely via a surrogate called a “puppet”’), but this
practice is generally discouraged. Covert bugging, also called “spying’, is generally
discouraged, and is rare. The command @weep is provided for those who wish to
check to see whether alistening device is present.

Requesting a Character and Getting Settled In
Thelnitial Request

Different MOOs have different registration policies. LambdaM OO requires that
each player provide a valid email address and its administrators take pains to ensure
that there is only one character per typist, or else that multiple characters are duly
cross-referenced to one another. Other MOQOs may have less restrictive policies.

The usual syntax for requesting a character on any MOO is:
@ equest <nane> for <email -address>

For example:
@equest Cinderella for cindy@irepl ace. com

Read the questions carefully, and answer straightforwardly. Depending on
which MOO you’re on, the system may check your connection site and compare it
against the email address you give. If they don’t match, it may ask you for a brief
explanation. If you aready have a character and are requesting a second (this is
permitted on some MOOSs, not on others), it may ask you to verify this fact, and/or
explain how it might be that there is aready a character with the email address
you've specified. Some MOOs disallow certain email addresses, specifically those
from providers that are known for giving free, anonymous email accounts. If you
have multiple email addresses, you may be asked to provide them.

The questions that are asked of you in the @ equest process come in three

forms: YES/NO questions, single line answers, or multiple line answers. If you change
your mind about answering any question at all, type:

@bort

(Note that if you are in the middle of amulti-line answer, @bort must beon a
line by itself.) For the multiline answers, you may type in as many lines as you need
to. A line, for the purpose of this discussion, is an arbitrary amount of text

4 David Jacobson, “Doing Research in Cyberspace,” Field Methods, 1999, 11:2:;127-145.

14 Basics

mailto:cindy@fireplace.com

terminated by the <ent er > key. To end your answer, type a period (.) on aline all
by itself (and then press the <ent er > key again). Sometimes further explanation is
needed. In such cases, you will be given aregular email address to use for providing
it.

Soon you should receive email at the address you provided, containing a
password and verification of the player name you requested, or notification that the
name you requested was already in use.® In either case, the character you requested
will aso have an alias of the form New Pl ayer - <nunber > e.g. New Pl ayer - 58337.
The password is case-sensitive, i.e. you must type it in exactly as given. You are not
stuck with the name New- Pl ayer - <nunber >. After you connect initially (and at any
time thereafter, as often as you like), you have the option of changing your name to
anything you like. Suppose the name “Cinderella’ was already in use, and our
intrepid typist received email saying that e had been given a character with the name
“New-Player-58337” and password “OgkM2".

The first order of business is to log on. Our typist would connect to the MOO,
see the welcome screen, then type:

connect New Pl ayer-58337 OgkM

There are a variety of things to do from this point, and the sequence isn't
essential. Two obvious things are to decide on a different name, and to change the
password to something that’ s easier to remember.

Changing Your Password, Changing Your Name, Adding Aliases

Passwords have to be more than four characters long, and are not permitted to
be common English words. One scheme is to select two English words and run them
together, for example, “RubySlippers’. As aways, passwords are case-sensitive. To
change your password, type @assword <ol d- passwor d> <new password>. So
our typist would enter:

@assword OgkM2 RubySl i ppers
Now let’s consider a name change, and perhaps some aliases. First, you'll want

to cast about and see if the name you’'re considering is aready in use, since names

have to be unique. To do this, you can use the @ho command. Suppose we want to
seeif the names “ Drusilla’ and “Prunella’ are taken.

Y ou type:

5 LambdaM OO is under certain population-growth restrictions, and so it is possible that your request

will be added to a queue, there. At the end of the @ equest process, you will be told what your place in
the queue is. Most times, the queue moves along fairly briskly. You can check your status as often as you
like: To do so, log on as a guest, then type:

@o registrar

Then, check status on <enai | - addr ess> using the email address you gave when you requested
your character. The person requesting the character Cinderella, for example, would type
check status on cindy@irepl ace.com

Basics 15

mailto:cindy@fireplace.com

@ho Drusilla

And you see on your screen:

Di sconnect ed
Pl ayer Last Di sconnect Locati on

Werebul | (#58806) Sun Sep 19 02:30:42 1999 EDT The Pasture

This indicates that the character Werebull already has “Drusilla’ as an alias, and
therefore that name is not available to you. Let’stry Prunella

Y ou type:
@ho Prunella
And you see on your screen:
"Prunella" is not the nanme of any player.

Success! To change your name, use the @ enanme command, as follows:
@enanme ne to Prunella

Names of players are not case-sensitive. Your name will appear as you type it in

when you use the @ enane command, but someone typing @ho pRunelLlLa would
still find you.

You are not limited to one name. Y ou might, for example, want to use “ Prunie’
as anickname. As before, the first thing to do is to see if that name (alias) is already
inuse. You type:

@ho Prunie

And if you're lucky, you'll see:
"Prunie" is not the nane of any player.

To add a name (as opposed to changing your name), use the @ddal i as
command:

@ddalias Prunie to ne

If you later decide you don’t like that nickname so much after all, you can
remove it asfollows:

@malias Prunie from nme

Describing Your self

The description you give yourself is what people will see when they look at you.
Usethe @escri be command as in the following example:

@lescribe ne as "One of Cinderella s two wi cked step
sisters. Her beauty, such as it is, is as cold as her
schem ng heart."

16 Basics

Type in the whole description as one long line (even though it shows as multiple
lines in the example).

Notice that the description is enclosed in double-quote marks. This is optional,
except that it happens to be the case that if you omit them, there will only be one
space between sentences, even if you type two spaces between each sentence. If you
use the double quotes, there will be as many spaces between sentences as you type.

If you find that you've made a typographical error in describing yourself, you
have two options. One (easiest if your description isn’'t too long) is to @lescri be
yourself al over again, as above. You can revise and re-enter your description as

many times as you like. The other alternative is to learn to use the note editor (see
the section that begins on page 66) and edit your description

As you meet other players, you will notice that some of them have multi-line
descriptions. You can’'t get a multi-line description with @escri be. Thisis another
incentive to learn to use the editor, as it is the best way to create a description that
has more than one line (paragraph).

Sooner or later you will undoubtedly encounter someone who reacts or responds
to the fact that you looked at em. Certain player classes provide the ability to be
notified when someone looks at you; this is generally referred to as look detection, and
it can be disconcerting the first few times you encounter it. In genera, it is
considered poor form to give someone grief for looking; some people assert that it is
rude even to mention that one knows someone looked. In contrast, some players not
only notice when someone €else looks at em, but in addition broadcast a message to
the room, such as, “Oliver notices Prunella’s glance and smiles at her,” or worse,
“Prunella looks at Oliver and smiles.” The second form is worse because it should be
up to Prunella to decide whether she smiles at the sight of Oliver or not. Perhapsitis
Prunella’ s nature to sneer, instead, and she should have the right to specify that.
MOOQers are not united in their opinions on thisissue, although most would probably
concede that broadcasting a message to the room every time someone looks at you
becomes boring fairly quickly.

Setting Your Gender

MOOs offer a variety of gender options. Y ou can use the @ender command in
two ways. If you typeit on aline by itself:

@ender

The system will tell you your current gender setting, the pronouns it associates
with that gender, and will show you a list of available genders. To set your gender,

use the @ender command with an argument (see the glossary for an explanation of
what an argument is), e.q,

@ender fenal e
In this case, the system would display:

Basics 17

CGender set to fennle.
Your pronouns:
she, her, her, hers, hersel f, She, Her, Her, Her s, Her sel f

Since there is no way to tell, online, whether someone is telling the truth about
eir gender, we sometimes speak of a player as “presenting as male” or “presenting as
female’.

Setting a Home

When you disconnect from the MOO (using the command @jui t), your player
object is returned to its honme on the MOO. Players who have not otherwise specified
a home are returned to a default location. (On LambdaM OO it’'s the Linen Closet.)
There is nothing wrong with keeping the default player start as your home. Many
players do this.

Another option is to find aroom that will permit you to set your home there (to

do so, go to the room and type @et hone). Thereis no penalty for trying to set your
home to a location where that is not permitted. You will simply be given a message
instructing you to ask the owner to make you a resident of that room. If you are the
owner of aroom and someone else wishes to set eir homethere, and you wish to let
em do so, the command is:

@ esi dent <pl ayer or object>

To see alist of your room’ s residents, type:
@esidents

To remove someone from the list of residents type:
@ esident !<player or object>

A third option is to create a home for yourself. Most players do this eventually.
To do it, you would use the @li g command. For an in-depth discussion of @li g and
related commands, see the section on building, starting on page 79.

Suppose Prunella wanted to create a home for herself named “The Crystal
Palace’. She could type:

@li g The Crystal Pal ace

The system would then create a new room object, would set Prunella to be the
owner of this room object, would set the name of this room object to “The Crystal
Palace’, and would print a message to Prunella saying that the room had been created
and informing her of its object number. A detailed discussion of objects begins on
page 37.

The Crystal Pal ace (<object-nunber>) created.

To get to her new room, Prunella will have to teleport there, using the object
number that the system just printed out for her. If the object number were #29370,
for example, she would type:

18 Basics

@o #29370

After arriving, Prunella could type:
@et hone

and then that location would be her new home. She would be in that room when
she connected, and would be returned to that room when she logged off. She could

also go there at any time by typing the hone command:
home

The room would start off with no description. Prunella could give it one with
the @escri be command. First she would @o there, then she could type:
@escribe here as "You are in a nagnificent palace, as warm
and inviting as its nane suggests."

If Prunella ever forgot the object number of her room, she could type:
@udi t

And that would show her a list of objects she owns, including herself and the
room she had just created.

Unexpected Greetings

Sooner or later, someone will greet you (typically with a page or a remote-emote)
within moments of your logging on. How do they do this? There is afeature object
(see page 41) that lets one designate interesting players, and which will notify one
when an interesting player connects or disconnects. These are called login watchers.
Most MOOs have some version of alogin watcher.®

Another thing that may seem disconcerting is that people may know that you
are new without your having told them. It's more than just being an unfamiliar face.
The @ge command tells how old a person isin terms of the MOO.’

Eventually, you will become familiar with these commands, and take such
spontaneous greetings in stride, or even start making them yourself!

50On LambdaM OO, it’ s feature object #24222.

70On LambdaM OO, other commands to find out about players ages are on Carrot’s Social Interaction
Feature (#36714).

Basics 19

Chapter 2—-How Do They Do That?

Overview

After you've visited a MOO a few times, requested a character, and started to get
the hang of communicating with others, you will undoubtedly begin to notice that
there’ s awhole lot more to MOQing than say and enot e:

e Youwill find that MOOs have different rooms and locations to explore.

* You will learn that there are commands you can type that will cause some of the
depicted objects to behave in various ways.

* You will undoubtedly have seen many object numbers (indicated by the #-sign).

* People may arrive and depart in showers of sparks, clouds of smoke, or a burst of
flame, and you may begin to wonder, “How do they do that?”

* You'll soon discover that the more experienced players have a great many
commands available to them that you do not.

While you don’t have to know the particulars of how a clutch works in order to
drive a stick-shift car, a basic knowledge of how the clutch pedal, gas pedal and gear
shift interact will make the going much easier. Similarly, you don't have to know

how to program to enjoy MOQing, but a knowledge of some of the underpinnings
will enhance your M OOing experience.

This chapter introduces severa of these advanced techniques; the following
chapter discusses some of these things in greater depth.

A Very Brief I ntroduction to Objects

A MOO is a multi-user domain that includes a programming language that
anyone may use to extend the domain. The particular kind of programming
language that MOOs use is called an object-oriented language, and as you explore the
MOO, you will encounter objects everywhere.

What you need to know about objects at this juncture is that they are there. Itis
also helpful to know that every object has a unique number that identifies it. If you
buy something from a mail order catalog, you might call and say, “I’d like to buy one
frizzlebopper, please,” or you might say, “I'd like to place an order. The first item
number is #4612.” Object numbers on a MOO are like item numbers in a mail order
catalog.

Thereis an in-depth discussion of objects beginning on page 37.

21

Exploring an Object-Oriented World

Text-based virtual worlds generally have an underlying metaphor or theme.
When you first connect, you typically see a description of where you are within that
world. It might be an open field, the deck of a space ship, aroom in a house, or the
reception area of an office building. Within the world described by the words on

your screen you can explore and interact with the various things and people you
encounter there.

To see adescription of the room you arein at any time, type | ook, which can be
abbreviated to the single-letter command, | .

Let’'s suppose that you' ve logged onto LambdaM OO for the first time, and have
opted to begin in the quiet location. After seeing all the information about news, the
tutorial, and hel p manner s, you may want to have another look your surroundings.
Type:

| ook

Y ou will see the following text:
The Linen C oset

The linen closet is a dark, snug space, with barely enough
roomfor one person init. You notice what feel |ike
towel s, bl ankets, sheets, and spare pillows. One useful
thing you've discovered is a netal doorknob set at wai st

| evel into what might be a door. Another is a small button,
set into the wall.

Now let's look at some things that are in this linen closet. If you type, | ook
towel s (orl towels), youwill see:

You can make out the outline of sone towels, but it's too
dark to tell what color they are.

Thisisnice, but not especially interesting; how about the blankets?
| bl ankets

You can nmake out the outline of sone blankets, but it's too
dark to tell whether they are flannel, wool, or electric.

Well, so far, so boring. But not as boring as it could be, actually. Someone, in
fact, went to the trouble of writing text for you to see if you look at the towels, the
blankets, the sheets, the pillows, the button, or the door. Most rooms, as a matter of

practicality, have some things that are merely mentioned in the room’s description,
and others that actually exist as things with descriptions in their own right. Suppose
the author had elected not to include the pillows as something you could look at. In
responsetol pill ows, youwould see:

| see no 'pillows' here.

22 How Do They Do That?

The author of the linen closet mentions two things as “useful”: a doorknob and a
button. But how are you to make use of them? Y ou might think to try typingt urn
door knob oerush but t on, and if you were to do so, something would haﬁpen in
either case. Before you leave the linen closet, though, it’s worth knowing that you
don’'t have to guess about which objects are interactive and how to interact with
them; the command examni ne exists to enable you to determine that. If, instead of
typing | ook button you were to type exam ne button, you would see the
following:

button (aka #53344 and button)
Owned by G oundskeeper.
A smal|l black button, set into a tarnished bronze plate on
the wall.
Obvi ous ver bs:
press/ push/ poke button

The exani ne command can be abbreviated to exam Exam door knob yields:

doorknob (aka #79708, door knob, and knob)
Owned by G oundskeeper.
You see a plain netal doorknob.
Qobvi ous ver bs:
turn door knob

Let's consider each of these two instances. Both the button and the doorknob
are objects, which means that they exist as things within the MOO and aren’t merely
mentioned in the text of aroom’s description. The first line you see after examining
an object is a list of the object’s aliases, and the object’s number. (For now, it's
perfectly fine to ignore the object numbers, but referring to an object by its number
always works.) The button has only its object number and its name (“button”) as
aliases, but the doorknob also has the alias “knob”, so the casual user could typet ur n

knob and get an appropriate result. The second line you see tells you who owns the
object. This, too, you can ignore for now, but if the button or doorknob were to

malfunction in some way, the appropriate person to notify would be Groundskeeper,
who owns these objects. Then thereisalist of “obvious verbs’. (It's amystery to me
why objects aren’'t called “nouns’ or why verbs aren’'t called “commands’, but that’s
the way it is.)) Verbs are commands that you can use to manipulate objects. (The
word “verb” has a broader definition in MOQOs, but it’s sufficient, for now, to think of
it as the name of a command — something you can do with or to an object.) In these
two cases, you could either turn the doorknob or push the button. It is an
idiosyncrasy of MOO syntax that definite and indefinite articles are usually omitted.

I will note here that there are inconsi stencies within the MOO as to how you can
tell, within aroom, what objects are in it that might be interesting or useful, and this
is because different rooms are programmed differently. Every room has a mechanism
(i.e. a program) associated with it to display its contents. Early on, most rooms
displayed their descriptions and contents like this:

Guest Cottage Porch
You are on a breezy, screened-in porch. A rocking chair and
a porch swing invite you to stay and relax for a while. A

How Do They Do That? 23

screen door |eads west into the cottage; steps |lead down to
t he | awn.

You see gl ass of | enpbnade and harnoni ca here.

Yi b and Bartl ebooth are here.

First is the name of the room, then the room’s description, then a list of non-
player objects in the room prefaced by the words, “You see’, then alist of the players
present. With such a scheme, a player might reasonably pass up trying to examine
the rocking chair, the porch swing, the screen door and the steps, and would zero in
on (and examine) gl ass of | enbnade and har noni ca, hoping, perhaps, to be able
todrink | enmonade and pl ay harnoni ca. Said visitor to the guest cottage porch
might also be moved to greet Yib and Bartlebooth.

At some point, it became possible for rooms to be dark, because some rooms are.
The coat closet and the linen closet on LambdaM OO are two examples of dark rooms.
These rooms specifically don't list the items or people who are present, unless they’re
also mentioned as part of the text of the room’s description (like the towels in the
linen closet).

Later developments in room technology enabled statements about some objects’
presence to be integrated into a room’ s text description. So, for example, if the guest
cottage porch were an integrating room, and a model of the gazebo had an
integrating message on it, it might look like this:

Guest Cottage Porch

You are on a breezy, screened-in porch. A rocking chair and
a porch swing invite you to stay and relax for a while. Of
to one side is a nodel of the gazebo. A screen door | eads
west into the cottage; steps |ead down to the | awn.

You see gl ass of | enmonade and harnoni ca here.

Yi b and Bartl ebooth are here.

Anytime the model of the gazebo was moved to an integrating room, the
sentence, “Off to one side is a model of the gazebo,” would appear in that room’s
description rather than in the list of objects that conventionally follows the text
description.

Another type of room is the detailed room, whereby an owner can add extra
descriptions, so, for example, if aroom’s description mentioned wallpaper, you could
type | ook wal | paper and get some extra detail, even though there wasn’'t actually
an object named wal | paper in the room. So in some rooms there are objects whose
presence is not obvious because aroom is dark, or there are objects whose presence is
not obvious because the objects are integrated into the room’s text description, and
there are “things you can look at” (in detailed rooms) that aren’t actually objects at
all. Each of these developments was seen as an improvement at the time. Detailed
rooms were thought to be “richer” than rooms that had single, ssmple descriptions.

I ntegrating rooms were thought to “read more naturally” than rooms that appended,
“You see <stuff> here,” at the end of their descriptions. All | can say is, bear
with it, and when in doubt, examni ne. Eventually you get afeel for it.

To summarize, then: | ook or | to see a description of the room you arein at any
time. Look <object> orl| <object> to seethe description of an object, if thereis

24 How Do They Do That?

such an object _inC?/our vicinity. Exami ne <obj ect > or exam <obj ect > to see alist
of its aliases, find out who owns it, and what, if anything, you might try doing with
it.

Moving Around in aM OO

MOQOs generally depict a spatia or architectura metaphor. When you first

connect, you are in a room — either the room designated as $pl ayer _start (by
definition the place where players start), or in another room that you’'ve created
and/or set as your home.

There are two basic modes of moving around. These are generally referred to as
walking and teleporting. Another way of thinking about them might be VR (Virtual
Reality) and non-VR or meta-VR: ways that transcend or break the frame story of the
virtual reality.

In the computer games Adventure and Zork, in which MUDs and MOOs have
their roots, most travelling was done using compass directions (and sometimes “up”
and “down”). You might see, for example, words to the effect that there was a house
to the east, and you would tIXPe the command east or e to enter the house.
Although many people find the notion of moving in compass directions non-
intuitive — when | leave my house | simply go out the front door without thinking
“northeast” — nonetheless compass direction exits are still in frequent use in MOQOs
today.

Most room descriptions whose exits are named for compass directions will give
cues to that effect. For example, part of the description of LambdaMOO’s library
acove reads, “The library itself is back to the east. A spiral
staircase l|eads up.” You might reasonably expect that typing east would
move you to the library and that typing up would move you up the stairs, and you
would beright. It is possible to look before you leap, so to speak. You can typel ook

east or | east before typing east. Failing to look is rarely of consequence, but
LambdaM OO builders are strongly encouraged to give their exits descriptions, and

from time to time there€'s an especially good one. It's worth knowing that the
descriptions are there, at any rate.

On some MOOs, you can type hel p map to see a map of the MOO’s main area
or areas®. There are also some non-V R ways to check for available exits and get your
bearings. You can type @ways for alist of obvious exits from the room you arein.

Exits can have other names besides compass points and “up” and “down”. Some

are intended to be intuitively obvious (“out 7, for example, from LambdaM OO’ s coat
closet and linen closet), and some are obscure (“vent ” from LambdaMOQ’ s kitchen

8 On LambdaM OO, there is an atlas on the mantel in the Living Room (to use it, go to the Living
Room, typet ake atlas from nmantel , and exani ne atl as to see its commands). There is also a copy
of it on the geography shelf in thelibrary.

You can also add the Compass Rosette Feature Object (#23824) (see pages 41 and 224) and then type
@ ose. Obvious Features (#41975) has the command @ r s for “long-range-scan” which lists all the rooms
within three exits of your current location.

How Do They Do That? 25

will move you into the vent system from there). Though not the norm on
LambdaM OO, some areas there and on other M OOs use non-compass exits primarily,
and often the names of these exits are capitalized within the text of a room’'s
description.

The go command lets you string multiple exits together. Typing:
go north west

is the same as typing nort h and then typing west . You can also abbreviate exits in
combination with the go command. From LambdaMOOQO’s living room, for example,
you can type go n wand wind up in the dining room as if you had typed each exit
name separately.

A later development was the concept of a room-within-a-room, and there are two
major implementations of this idea. one is a container room, that — as you might
expect — is a hybrid between a room and a container. Like other containers, you can
open and close it, and can put things into it (including peoplel!). In addition, since
such aroom isinside another room, instead of entering it via a conventional exit (i.e.
an exit that you simply type the name of to use), you must enter the container room
explicitly. The dishwasher in LambdaMOQO’s kitchen is an example of this kind of
room. If no oneisaround to stuff you in, you can check out the inside by typing:

open di shwasher
enter di shwasher

Sometimes it doesn’t make sense to open and close a room as if it were a container,
and so someone developed a portable room that wasn't container-like. By
convention, you go into such a room by using the enter command, e.g. ent er
hel i copter.

In either case, with portable rooms or container rooms, you can leave by typing
either exit or out. (Most of them will also let you typel ook out from within, to
see what’ s outside.)

There are other ways of getting around that are said to be “consistent with the
VR”. These include elevators, trains, planes, paintings that transport you to the
places they depict when you gaze at them, and so forth. Rooms that can be reached
exclusively by conventional exits or in ways that are consistent with the VR are said
to be connected.

Teleporting

Teleporting is a way of moving around that “breaks’, “violates’, or “bypasses’
the virtual reality, which is another way of saying that it is a way of going from one
room to another without using conventional exits or other VR means. The three
most commonly used commands to do this are @ oi n, @o, and hone®. Notice that

° In the early days of LambdaMOO, teleportation in the form of @oin and @o didn’'t exist.
Morpheus made a generic ring of teleportation which functioned in a way somewhat similar to the way
@ddr oomworks today. Eventually everyone had one. At that time, quota was object-based rather than

26 How Do They Do That?

two of these commands begin with the @sign, a common signal that a command is
not strictly VR.

Suppose you are in the LambdaM OO library and your friend Werebull pages you
from the pool. He pages, “Come on down, we're having a party!” Maybe you don’t
want to take the trouble of going south to the corridor, west (four times) to the
entrance hall, south to the living room, southeast to the deck, and then south to the
pool deck. Or maybe you don’'t know the way. At any rate, on this particular
occasion, you just want to be there already and not take all the time and trouble of
walking. You cantype @oi n Wrebul | and voild You instantly join him wherever
heis (in the swimming pool, in this case).

On another occasion, you might want to teleport to a particular room (regardless
of who might already be there) without going to the trouble of walking, and for this
there is the @o command. In this case, you will need to specify the room to which
you wish to teleport, and this is one case where all those pesky object numbers
beginning with the #-sign come into play. To teleport to a distant room, you will
generally need to specify that room’s number. For example, to go to the foyer of the
LambdaM OO Museum, you would type:

@o #50827

How do you find out a room’s number? Several ways. You can ask around. If
it’s a popular room, many players will know the room’s number by heart and will be
ableto tell you. If you arein aroom, you can find out its number for future reference
by typing exam here. You might read a room’'s object number in other written
references to it, and it is for this reason that written references to rooms (and other
objects of general interest, for that matter) usually include the object number.

Remembering Rooms Object Numbers

Since teleporting is so common, and since remembering all those object numbers
is so cumbersome (for most people, anyway), there is afacility for you to associate the

name of a room with its object number and store that information, and the @o
command is able to use that list. The three commands for maintaining your list of

rooms are @ oons, @ddroom and @ nr oom These commands are provided as part
of LambdaCore.

Suppose you are exploring, find the foyer of the LambdaM OO museum, and
think that you think you’d like to return to that location to from time to time. While
there, you could type:

byte-based, which means that people were limited to a certain fixed number of objects (ten, | think it was),
regardless of their size, rather than an indefinite number of objects limited by the total amount of storage
they take up. Creating a ring of teleportation, then, used up a significant percentage of your building
alotment. Since everyone had one, and since it was perceived as being expensive, someone lobbied to
have the code added to a player class, instead. This was done. To “encourage’ people to recycle their
teleportation rings, a note was posted on the refrigerator telling people to be sure to wash their hands after
a food fight. When a person did so, e lost eir ring down the drain and into the garbage disposal, with
suitably appropriate sound effects. (With thanks to Doug (#3685) who shared this story with me in
September, 1999.)

How Do They Do That? 27

@ddr oom nuseum

The system will then add the name “museum”, paired with its object number, to
your player object, and thereafter if you want to teleport there, you can type @o
museuminstead of @o #50827. The place where this information is stored is called
aplayer's.roons database. (I usually pronounce the period as “dot”, so if | were
speaking, | would say, “a player’s dot-rooms database.”) On most MOOs, guests and
new players are provided with a preliminary list of rooms the wizards think they
might want to teleport to by name, and players can add to this list as desired (using
the aforementioned @ddr oom command). To see a list of the rooms you have
specified so far, along with those that have been specified for you, type:

@ oons

To remove aroom from your . r oons dat abase, you can type:
@ nTr oom <name>

Finally, you can type @o hone to teleport to your home.
You can also type:
horme

on a line by itself to teleport to your home. This is an exception to the @-sign
convention, for historical reasons (some MUDs only had one teleport command, and

that was hone).

As a point of etiquette it can be awkward for al concerned if you teleport
somewhere only to find that you’'ve barged in on a private conversation or a tryst,
and some players, even if they’re alone, will react negatively if you teleport to their
location without first paging them to find out whether you might be welcome at that
particular time. It is possible for players to lock rooms that they own in order to
prevent unwanted or uninvited entry. It is the case, however, that players don't
always do this, yet still complain if someone teleports in. Private and public rooms
are addressed briefly in the section on privacy that begins on page 31, but if in doubt,
page before tel eporting.

The Give and Take of a Multi-User Environment

One of the draws of a multi-user environment is that you get to meet and
interact with other people whom you might otherwise never have encountered. And
one of the drawbacks of a multi-user environment is that you may encounter people
who not only do not embrace the same norms of behavior that you do, but whose
behavior may be annoying at best. Different MOOs have different themes, aims, and
local customs — thus different conventions of acceptable behavior. Some MOOs are
family oriented, some are educational, some are Dungeons and Dragons games, some
are professional, and some are explicitly “anything goes’. It would be presumptuous
to assert that any particular way of behaving is generally acceptable or generally

unacceptable. Many MOOs have documentation available like hel p nanners or

28 How Do They Do That?

mailto:@-sign

hel p rules, and I would urge you to seek this document out on your MOO and
acquaint yourself with its contents.

This section details a variety of defense mechanisms, built in to the MOO, that
you can use to counter various annoyances. From these, one may infer that certain
behaviors carry the risk that you may annoy others if you engage in them — two sides
of the same coin.

Noise Abatement
@gag

There may come a time when you wish you could just “turn someone off”, so to

speak, and you can, after a fashion. The @lag command prevents you from seeing
text generated by a specified player or object.”’ The syntax is:

@ag <pl ayer or object>
It remainsin effect until you type:
@ingag <pl ayer or object>.

You can see a list of people and objects you are @aggi ng with the @agl i st
command. @aglist all will show you a list of people who are @aggi ng you,
though on large systems that command may be slow to execute, because it has to
look at each player in the database individually.

Sometimes it is just as effective, if you have the self-discipline for it, to ignore
someone as if you were @aggi ng em even though you aren’t. The principle, here, is
not to reward obnoxious behavior with a reaction. (Whom you are @aggi ng is
readable by others. The information is kept in a player’s . gagl i st property, and

some players take umbrage at being @agged, which is one situation where simulated
gagging might be one way to go.)

Theflip side of @ag is generating unwanted noise, either generally or directed at
one person in particular. Typing in al uppercase letters is sometimes construed as
shouting. A different definition of shouting is writing a program that broadcast’ s text
to all connected players (or amost all — leaving out one or two people doesn’'t exactly
exonerate you). Spamming refers to generating so much text that its sheer quantity is
offensive regardless of its content. Spam can be more than just offensive — it can be
disabling for another user who has a very slow communications link to the MOO.
You might also be @agged just for making a nuisance of yourself — it's the
prerogative of the person hearing the noise to @ag you or not, as e sees fit. If you
have been @agged by someone and would like to ask em to reconsider, you might
ask amutual acquaintance to intervene on your behalf.

Y On LambdaM OO, new players are created with a lag-reduction feature pre-installed, and must first
type the command @ il ag before @ag will work.

How Do They Do That? 29

@par anoid and @check-full

Sometimes it's hard to tell whom to @ag, because someone may cause
unattributed text to be displayed to your screen. Unattributed text is text whose origin
isunclear. Falsely attributed text is text that appears to have been generated by one
person when in fact it was generated by someone else — this is called spoofing. The

@ar anoi d command records not only the last <number> lines that have been
displayed to your screen, but their origins as well. The syntax is any one of:

@ar anoi d

@ar anoi d of f

@ar anoi d i mredi ate
@ar anoi d <nunber >

If you see some baffling bit of text, you can then type @heck-ful |l <text>
and the system will print out a trace from which you can usually make afair guess as
to who initially typed in the command.™*

The sort of behavior that occasioned @ar anoi d and @heck-ful | isproducing
unattributed or falsely attributed text, especially with the intention of confusing or

deceiving others. For example, if Klaatu causes the text, “Yi b farts |oudly,” to
be displayed, Yib would have cause to complain and Klaatu is probably in the wrong

(depending, as always, on local custom).

@r efuse

The @ ef use command lets you refuse certain actions from all players or from a
specified player. The syntax is @efuse <action> [from <player>] [for

<duration>]. The parts in square brackets [] are optional. The actions that you
can refuse are:

e page — prevent someone from paging you
* whi sper — prevent someone from whispering a message to you
e mail| — prevent someone from sending you a message via MOOmail

* nove — prevent someone from tel eportir;? you (Note, this can affect teleportation
— @go, @join, etc. — because if you @refuse move without specifying a particular
player, you refuse to be moved by anyone, including yourself!)

e join — prevent someone from entering the same room as you (only works in a
few rooms that support this functionality)

e accept — prevent someone from handing you an object (or teleporting it to you)
« fl ames — posts from the refused player(s) are suppressed on mail lists
* politics —refuse programmatic campaign solicitations (LambdaM OO only)

I Aswith @ag, on LambdaM OO you must type @ m ag before being able to use this facility.

30 How Do They Do That?

mailto:@check-full
mailto:@go
mailto:@join
mailto:@refuse

« all —all of the above

The flip side of @ ef use is rather general, but you might deduce that moving
someone without eir consent might result in an @ ef usal , as might sending em
obnoxious mail, tel eporting unwanted things into eir inventory, etc.

You can type @ ef usal s to see what actions you are currently @ ef usi ng, and
can type:

@inr ef use <action> from <pl ayer>

to cease refusing an action. As with your gaglist, your @ ef usal s list is readable by
others. To see someone else' srefusals, type @ ef usal s for <pl ayer>.

Privacy

Just because it’s pseudonymous, doesn’'t mean that it’s private, and in fact,
privacy on aM OO is amost impossible to guarantee. People may not know your off-
MOO identity, but they can and do seem to pay a surprising amount of attention to
what other people are doing. If you have something truly sensitive to discuss, it
really is better to take it off the MOO.

@lock

You can use the @ ock command to prevent unexpected and/or unwanted entry
into a room you own. The syntax is @ock here with <key>eg., @ock here
with nme || <soneone else>. You can specify as many people as you wish,
separated by “| | 7 which translates to “or” in the locking syntax. To unlock your
room again, type @nl ock here. Various room classes on different MOOs may
provide more elaborate programming for ease of controlling access.

The flip side of locking and room security is joining people when you are
uninvited, unannounced, or unwanted. There may be MOOQOs where there is away to
designate a room as public or private, but | am not acquainted with any, which
means that in many cases you may have to guess, and/or learn from experience. Itis
probably a pretty good bet to guess that a room named “Yib’s Room” is private, and
that you might receive a less than enthusiastic welcome if you teleport in when Yib is
in the middle of a private conversation with someone else. It might be argued that
the onus is on Yib to lock her room if she doesn’t want surprise visitors, but the
reality is that people often forget to do this. | can’t think of a situation where it
would be unacceptabl e to page someone, first, and ask if you may join em.

How Do They Do That? 31

@sweep

The @weep command checks aroom for potential listening devices, (any object

that hasa:tell verbonit). If you own the room, you might @ove or @j ect the
unwelcome item. If you dont own the room, you might elect to have your

conversation somewhere else.

The flip side of @weep is bugging and/or recording conversations when your
doing so is not obvious to the participants. Similarly, teleporting silently into the
midst of a conversation such that the participants don’t realize you' re there can also
land you in the dog house.

General Awar eness

People seem to have a natural tendency towards nosiness. | am continually
surprised by the many ways that people find, on MOOs, to look in on and keep track
of others' doings. Being aware of some of these may help you make more informed
choices about where, when and how you do or say things of a potentially sensitive or
confidential nature.

 logging — Most client programs permit people to record some or all of their
MOOQing session with the option of saving it to a file for later review. It is not
unusual for people to do this, typically for their own reference or review at alater
time. In my experience, it's the exception rather than the rule for logs to be
published without permission, but you should be aware that anything you say or
do in the presence of another could come back to haunt you one day.

« Anyone can tell your MOO age, i.e. how long it has been since you first
connected.

« People can view your description even if they aren’t in the same room with you.
* Anyonecan @udit you and view your possessions.
e Whomyou're @aggi ng or @ ef usi ng is publicly accessible.

* People can detect when you look at them. Some people have a message that
broadcasts to the room when you look at them.

» It is possible to detect your checking on someone’'s connection status when you
use @ho.

* Feature Object owners can and do keep track of how often their various feature
verbs are called, and theoretically could keep track of who calls them.

« Mailing list owners can detect when you @ ead or @eek at messages on a
mailing list.

 Player class owners are in a position to snoop in a variety of ways, including
intercepting pages that you send or receive, intercepting MOOmail that you send
or receive, and listening to conversations. There is usually enough social pressure
to keep player class owners from doing these things, but one should be aware of

32 How Do They Do That?

what’s theoretically possible, and understand that this is what's behind the
admonition to trust the owner(s) of your player class parent and ancestors.

* Wizards can look at anything on the MOOQO, including properties and verbs that
you have set to unreadable. izards can enter locked rooms. Wizards can view

your forked tasks. They can (though traditionally do not) read your private
MOOmail. Wizards have access to your registration email address(es) and all the
site addresses from which you connect. Strictly speaking, if you don’'t trust the
wizards of a particular MOO, then you shouldn’t get an account there. It's an
interesting paradox, then, that anyone gets an account anywhere, because there
really isn't a practical way to assess a group of wizards trustworthiness and
integrity before the fact. Aswith many thingsin life, it's a calculated risk.

Theft and Trespass

Sometimes people steal things on a MOQ, but in point of fact it isimpossible to
truly hide a thing’s whereabouts. | generally think that complaints of people stealing
things are overblown — most of the time you can just @udi t yourself and @rove an
object you own back to where you want it to be. When you can't just @move an
object you own to alocation of your choosing, things get more interesting. Trespass
is the opposite problem: It's possible for someone to move something into your
inventory or a room you own and make it difficult to get rid of. (Imagine a
pernicious “Kick me!” sign.)

@lock

In addition to using the @lock command to keep intruders out of a room, you
can also @ ock objects in place to prevent people from taking them.”? See hel p
| ocki ng.

Theft Prevention

Some player classes provide an option that prevents others from moving things
out of your inventory. This sounds fine, but becomes problematic if you pick up
something that | own, and then | can't move my own object back to where it
belongs. (In my experience, this situation has usually turned out to be an oversight
on the part of the player class author, and been corrected upon request.)

The way theft prevention works is that when an item leaves a player’ s inventory,
a special verb on that player called : exi t func is called, notifying the player object

2 On LambdaM OO you can ask the housekeeper to return an item to a specified place when it is no
longer in use. This technology enables people to borrow things without your having to keep constant
track of them manually and repeatedly put them back where they belong, and is a nice alternative to
locking thingsin place.

How Do They Do That? 33

mailto:@lock

that the item is leaving. A theft-preventing : exi t f unc verb would fork a task and
move the object right back again. A civic-minded : exi t f unc verb would probably
check to see if the exit was initiated by the object’'s owner (and/or a legitimate
housekeeping task) and, if so, permit the item to be moved.

The flip side of @ ock and programmeatic theft prevention is taking stuff that
doesn’'t belong to you. Sometimes you just have to guess as to whether an item is

one that anyone is welcome to borrow or one that someone will miss if you take it,
but be advised that this can be an issue that annoys people.

@eject

This command is for getting rid of things that are unresponsive to dr op and/or
@move. The syntax is @j ect <itenk from <l ocati on>, and you have to own
<l ocati on> for it to work. (Typica usage would be @j ect <item> from e or
@j ect <itenmr from here.) Successively forceful versions of thisare @j ect! and

@j ect!!, which provide the item being moved progrvele/ less information about
its being moved, thus giving it less opportunity to move itself right back again. If an

item continues returning and <| ocat i on> is a room, you might need to @ ock your
room against theitem (@ ock <roont wi th !<itenp)andthen @j ect it.

@ban

This verb prevents a designated player or item from entering any room you own,
as opposed to @ ock, which only works on one individual room at atime.

@spurn

This command works like @an, except it prevents a designated item from
entering or re-entering your inventory. With a particularly pernicious object, it
might be necessary to @pur n it before using @j ect. (@purn isarelatively recent
addition to the anti-trespass verbs available. MOOs based on a LambdaCore dated
prior to 1998 probably don’t haveit.)

The flip side of @] ect, @an, and @pur n is trespass, either in person or with
an object. Realize that if a player doesn’t want to carry an object of yours or have it

in a room e owns, then you are on risky territory if you try to impose your presence
or program an object’s “stickiness’.

34 How Do They Do That?

Sexual Advances

Some people who MOO like to engage in conversations with overt sexual
content, either to shock people in public rooms, or privately, in order to become
sexually aroused. If you aren’'t expecting it, receiving a sexually explicit page can be
very disconcerting. So, first, just be mindful that such an event might occur.
Second, be aware that most people who ask for MOQOsex are looking for a consenting
partner. A politely paged, “Not interested, thanks anyway,” is enough to deter the
vast majority of people cruising for action. If someone persists despite your declining
politely, your best course of action is probably to utilize the noise abatement
procedures detailed above. If you do decide to accept someone€'s invitation, be
prudent: In particular, consider very carefully before giving anyone any real-life
information about yourself.

If you are the person looking for a sexual conversation or encounter, you should
be prepared (and willing) to take “No” for an answer, and be aware that not everyone
is amenable to being approached in this way. | recommend politeness first,
lasciviousness later.

Har assment

Different people have different thresholds of annoyance beyond which they feel
harassed. Each M OO has its own policies and procedures for dealing with harassment
or alleged harassment. On some MOQOSs, one is advised to contact awizard. On other
MOOs, the wizards explicitly state that they expect players to manage on their own.
It is an inconvenient fact that there are people who seem to derive enjoyment from
annoying others. If you are on a MOO whose wizards encourage you to notify them
if someone is harassing you, by all means contact them. If you are on a MOO whose
wizards have a more hands-off policy, understand that no amount of programmatic
effort can prevent every instance of harassment, particularly a perpetrator’'s first
attempt to harass a particular target. While an assault is never the victim's fault,
there are some things that you can do to reduce the chances of being selected as a
target, and to minimize the likelihood of repeated occurrences.

*+ Try asking the person to desist. Sometimes supposed “harassment” is truly
unintentional, and it's a shame to escalate something that’s just a simple

misunderstanding.

* Redlize that perpetrators want you to react. This is why they attack people and
not inanimate objects. The more distress you show, the more you reward them

for their offensive behavior. This is not to say that you shouldn’'t be upset, but
that a flamboyant display of your distress to the perpetrator is likely to generate
more unwanted attention from em. The calmer you can manage to seem in the
face of a textual attack, the sooner the perpetrator will give up and go pick on
someone else. The most effective response is no response at al, as if you had

already @agged whoever or whatever was generating the unwelcome text.

» If you feel panicked, @ui t immediately. Thisis equivalent to simply hanging up
the telephone if you receive an obscene phone call. Letting yoursel I’y be hounded

How Do They Do That? 35

off the MOO may be unpalatable, but in most cases it is effective. In other
instances, it may be sufficient simply to relocate to another room.

» Check @ho before you connect. (Most MOOS permit this, though some do not).
Return when the person bothering you isn’t connected emself, then @ag, @an,
and @efuse all from <ene for <several > years.

+ Do everything you can to rise above it, stay out of the fray, and move on. As my
mother used to say, “Don’t get in a pissing contest with a skunk.”

Outing

MOOs vary in their privacy policies, but a good rule of thumb is that if a MOO
does not in some way programmatically identify the typists behind the characters
(e.g. by incorporating site information into guest descriptions or providing an
automated registry of players email addresses), then it is impolite to disclose
information about another player’'s offline identity or particulars without that
person’s permission. Unfortunately, there is no program one could write to prevent
this from occurring. Your best defense, as always, is to keep private information
private, and not disclose it to others.

Summary

MOOQOers vary in their cultural and behavioral norms and expectations, and
MOOs vary in the kinds of interactions that are encouraged and tolerated. Getting
along is something of a balancing act. There are few hard and fast rules, but it’s hard
to go wrong if you treat others with respect, then learn a few techniques to cope
effectively with the few troublemakers that are out there. Good luck.

36 How Do They Do That?

Chapter 3—What’s Going On, Here?

Objects

MOO stands for “MUD, Object-Oriented”*®. This section discusses in depth what
an object actually is.

Objects are the building blocks of a MOO. They are things; in a sense, they are
nouns. A noun is aword that represents a person, place, or thing; an object is a data
construct within the computer program that is the MOO (i.e. the server) that
represents a person, place, or thing. Some nouns represent concrete things, such as
chairs, cats, and candy, while others represent intangible things, such as news,
knowledge, and abilities. Likewise, some objects represent concrete things within the
MOO (chairs, cats, candy) while other objects represent intangible things (news,
knowledge, and abilities). But intangible things are still things, and therein lies the
nature of an object.

Every object in a MOO is assigned a number upon creation. This number is
unique within the MOO and immutable. If absolutely every characteristic of an
object were changed — its name, its owner, its location, its description — its number
would still be the same.

There are certain pieces of information that are attached to every valid object
without exception. (An object that has a number but doesn’t have these pieces of
information associated with it is an invalid object, by definition.) These pieces of
information include the object’s owner (itself identified by object number), its
location (identified by object number), its contents (a list of one or more object
numbers), and its parent (identified by object number).

Object parenthood is a special concept. An (imperfect) analogy is the taxonomy
of animals. There are animals, and then there are vertebrates and invertebrates, and
there are mammals and reptiles and insects, and there are felines and canines, and
there are tigers, and then ther€'s this tiger that happens to have a litter of adorable
tiger kittens, among which is a particular tiger kitten whose name is “Stripes’. The
structure (which is also called the object hierarchy) is like a family tree (or a root
system), where everything is descended from a thing (an object) that came before it.
The root object (with a unique number: #1) is unusual in that it has no parent.

Some objects are used so often that the system provides away to refer to them by
name instead of by object number, and we use a $-sign to designate those. Some

especially common ones are $t hi ng, $cont ai ner, $room and $not e. But each of
them also has a unique object number on the MOO (#5, #8, #3, and #9 respectively,

on LambdaM OO).

B“MUD” has come to stand for “Multi-User Domain”, though it’s original meaning was “Multi-User
Dungeon”. MUDs have their roots in a role-playing game called “Dungeons and Dragons’ and in some
single-user computer games along the same lines that were popular in the 1970's and 1980’'s, notably
Adventure and Zork.

37

When you create an object, you begin by specifying its parent and its name, for
example:

@reate $thing naned "rock"
The system will respond with something like:

You now have rock w th object nunber #1614 and parent
generic thing (#5).

And your rock will have all the attributes and characteristics of the generic thing

that is its parent, until such time as you modify it, for example by giving it a
description, or maybe by programming it to behave in some rock-like way.

You can see alist of al the objects you own by typing:
@udit ne

You can see a list of objects Yib owns by typing @udit Yib. When you
examine an object, you are told its number, among other things. Y ou can check your

parent object and its parent object(s) (i.e., its ancestors) by typing @ar ents ne, and
you can check the parents of any object by typing @ar ent s <obj ect >.

When must you refer to an object by its number, and when can you just use its
name? In general, if you are holding an object, or are in the same room as an object,
then you can refer to it by its name. If you are at some remove from an object (i.e.
neither holding it and nor in the same room) then you generally have to refer to that
object by its number in order for the system to know which object you mean. There
are some exceptions: Objects that can be designated with the $-sign plus a name
($thing, etc.). Mailing lists, which begin with the asterisk symbol. Some commands
let you specify a player by name even if you aren’t in close proximity (@vho Kl aat u).
And often you can specify a distant player by name with the tilde (~):

| ook ~yib
will yield the same result as:
| ook #58337

(if #58337 is Yib’'s object number).

On a MOOQO, everybody who's anybody, and everything that’s anything, is an
object.

Seealsohel p obj ects.

M oving Objects

Chapter 2 included a discussion of how to move (yourself) around the MOO.
This section discusses moving other objects from one place to another.

A little about what it means to move an object: The system keeps meticulous
track of every object’s location. Specifically, every object has a property (a named
piece of data) which stores that object’s location in the form of an object number.
An object in the LambdaMOO Living Room, say, would have the Living Room’s

38 What’'s Going On, Here?

object number in its .l ocation property. (When naming a property, it is
conventional to precede it with the “. ” character.) Reciprocally, while that object is
in the LambdaM OO Living Room, that object’s number will appear in the Living

Room’s. cont ent s property. So: every object stores its location, and every location
stores a list of its contents. When an object is successfully moved in a MOO, three

things happen: The object’s . | ocati on proEerty is changed to reflect the object’s
new location. The object is removed from the old location’s list of contents.” The

object is added to the new location’ s list of contents.
The most straightforward way to move an object isto take it or drop it.

Suppose | own an object named bri ght sparkly thing, but leave it lying
about in the driveway where anyone can find it. Shmool comes along and sees:

Dri veway

A circular driveway, in front of LanbdaHouse. The
LanbdaHouse front door is to the south. The drive curves
away to the northeast and northwest; there is a spur to the
west, curving back around the house to the garage.

You see bright sparkly thing here.

Shmool types:
take bright sparkly thing

Shmool now has the bright sparkly thing in his inventory (the list of stuff he's
carrying), and anyone looking at Shmool will see not only his description, but his

inventory as well:
| Shnool

Shnool
A 3 1/2 foot tall squirrel, bald but for a 3 foot ponytail,
with large and |uminous violet eyes. A silver |ocket
dangl es by a gossamer chain around his neck.
Carryi ng:
bright sparkly thing
When Shmool took the bright sparkly thing, he changed the database, meaning
the. | ocati on of the bright sparkly thing changed, the . cont ent s of the driveway
changed, and the . cont ent s of Shmool changed. Note that if Shmool had merely
emoted,: t akes bright sparkly thing, on the other hand, while it might appear
that he had taken it, it would in fact still be lying in the driveway.
Shmool might then type:

@o hone

drop bright sparkly thing
to add it to his growing collection of stuff. The bright sparkly thing would be
removed from Shmool’ s inventory and added to the contents of his room. If Shmool
keeps this up, his room will become quite cluttered! He might be moved to create a
treasure chest to put thingsin. Putting things into containers is another way to move
things. Shmool would type:

What’ s Going On, Here? 39

put bright sparkly thing in treasure chest

and the bright sparkly thing would be moved again: Its new location would be the
chest, and the contents of Shmool’s room and his treasure chest would be changed
appropriately, too.

Eventually | notice that my bright sparkly thing is missing. Where could it be? |
look everywhere for it. Last seen in the driveway! | go to the driveway, but the
bright sparkly thing is gone. Some rascal has taken it!

I might search high and low, and on a M OO as big as LambdaM OO, or even on a
much smaller one, | might never find my object. If | cared to get my object back, this
is an occasion where | might choose to break the VR and start working with object
numbers. Specifically, | might want to teleport my object back to a location of my
choosing.

Remember that if you aren’t holding an object or in the same room with it (my
predicament), then you must identify it by its number. For awhile, | just ignored all
those object numbers, and got along fine without them, but now | would really like to
know the object number of my bright sparkly thing! There is a way, by using the
@udi t command. | type:

@udi t

and the system prints out a list of objects (by number!) that | own, along with their
size, name, and location. Now | have the information necessary to teleport my bright
sparkly thing, either to myself or to my location or to a named object in my vicinity
or to a location whose number | know (aha, those numbers, again), using the @move
command. The syntax is:

@move <object> to <l ocation>

Here are some of my choices, assuming that the object number of my bright

sparkly thing is #4612 and that | am in aroom with a walnut desk that | use in lieu
of atreasure chest:

@move #4612 to here

@move #4612 to ne

@move #4612 to a wal nut desk
@move #4612 to #6193

(On LambdaM OO, the last example would move my bright sparkly thing back
to the driveway.)

Getting Rid of Unwanted Objects

You may find yourself in the strange predicament that you are carrying
something, or something is attached to you, or something is in a room you own

which you would like to be rid of but which doesn’t respond to the @rove command.
For thiswe have @j ect . Thesyntax is:

@ject <itenr from <l ocation>

40 What's Going On, Here?

If you're holding it, then <l ocat i on> would be ne; if you want to gect a thing
from aroom you own, then <l ocat i on> would be her e.

Information is power. In this case, if you know the number of athing, you can
teleport that thing. There are some exceptions. (Aren’'t there always?) An owner can
lock a thing in place, preventing people from taking it or otherwise moving it. An
owner can put conditions on moving an object. The owner of a room can prevent an
object from being dropped or moved there. (See locking, page 88) Lastly, on
LambdaM OO, the owner of an object can let people borrow it, and have the
housekeeper return it to a designated location when certain conditions are met.

Taking things that don’t belong to you falls into a category | call, “risky
behavior”. It isn’'t strictly forbidden, and if you know how, it’s easy to undo. But it
also annoys some people, so think before you take.

Feature Objects

This section discusses Feature Objects, including an explanation of just what sort
of objects they are and how they work.

When you are connected to a MOO, you type things in and read text that
appears on your screen. The lines you type (except when you are being prompted for
data, for example when you are working within an editor) are commands. When you
type a command, you expect something to happen, either a change to the database
(e.g. changing your location) or perhaps simply the display of some informational
text from the database (e.g. looking at aroom or a player). MOQOs are user-extensible,
which means that users can create objects and can define (i.e. program) commands
associated with those objects, which you and others can then use. It is part of the
server's job to consider the command you type in and divide it into its component
parts (command name plus optional arguments or direct object, preposition and
indirect object). The process of separating a command line into its component parts
is called parsing, and the parser is the part of the server that does this. Once the
command has been divided into its component parts, the server then tries to identify
an object that defines the command (verb) that you want to run. It conducts its
quest for an object defining the verb in a very particular order, as follows: (1) your
player object or player class or any of its ancestors, (2) any of a player’'s feature
objects, (3) the room you are in, (4) the direct object (if specified and identifiable),
and (5) the indirect object (if present). If the parser finds that the command is valid
(i.e. defined on one of player, a feature object, the room, the direct object or the
indirect object), then the server tries to execute it. If the parser can’'t find any
definition of the command on any of the objects it is supposed to consider, then the
system printsthetext,| don't understand that.

A feature object (commonly referred to as a/an FO) is an object that exists solely
to serve as a repository for a set of commands that you might want to use, so that
when you type the command, the systemm executes it rather than displaying

everyone's favorite, | don't understand that. The beauty of feature objects is
that for commands that lend themselves to this method implementation (some

What’'s Going On, Here? 41

commands don’t), anyone can use them regardless of what player class e has selected.
Thisiswhy feature objects tend to have broad appeal.

Unlike objects that represent tangible things, such as chairs, candy, or rocks, you
don’'t need to be holding an FO or in the same room with it in order to useit. Rather,
one adds a feature to oneself, which is another way of saying that one adds its
number to alist of feature objects one wishes to be able to use. To add a feature, you
have to know its object number. To find out a feature’s object number, you can try
asking the person who just used it, or you can type:

@eatures for <so-and-so>

to see a list of that person’s feature objects and their numbers. Then you can add it
by typing:
@ddf eat ure <obj ect - nunber> to ne

So, if you notice that mockturtle is a thoughtful guy, and in particular much of
his text appears in typographical thought balloons instead of between double quote
marks:

nockturtle . o O (Can she read ny toughts?)

You might say, “mockturtle, is that thought balloon verb on an FO?" And

mockturtle might quickly type @ eat ures for ne to jog his memory and then say,
“Yes, it's the 9thirc11<’ verb on the Thinking FO, #1039&.” And then you might type

@ddf eat ure #10392 (and become more contemplative, yourself).

It's possible to use a feature object command quite often and forget which
feature object it's actually on. Then when someone asks you what FO a verb is on,
you might look at your list of features and still not know which one has the
command in question. In such a case you might take advantage of a verb called

@i nd. Soinstead of listing his feature objects, mockturtle might instead type:
@ind :think

(Note that the colon is part of the command), and the server would print on his
screen, The verb :think is on Thinking Feature(#10392).

Most feature objects have help text (e.g. hel p #10392) that list the commands
they offer and explain briefly what they do and how to use them.

On LambdaM OO, there is an exhibit in the museum dedicated to feature objects,
where you can read each one's help text and then pick and choose the ones you
want. On other MOOs, you can type @i ds $feature to see a list of all direct
children of the generic feature object, and then read the help text for those feature
objects that look like they might be of interest. It might be tempting to add all the
feature objects you can find, but remember: When parsing a command, the server
must consider all the verbs on you, your player class, its ancestors, all your feature
objects, the room you're in, and possibly direct and indirect objects. The more feature
objects you add to yourself, the longer this process takes. It’'s better to read the help
text for various features and then add only those features that you think you’ll
actually use.

The sequence in which you add feature objects can matter. If two feature objects
define the same command, the first one in your list of features is the one that will be

42 What's Going On, Here?

executed. To change the order of your features, use the @ nf eat ure command to
remove the one that comes first, then re-add it to move it to the end of the list.

Player Classes

A player class is an object that provides or expands a set of commands available
for a player to use. To use a player class, a player changes eir parent to that player
class object, thus inheriting all its properties and verbs and all its ancestors' properties
and verbs.

Recall that every valid object (except #1, the root object) has another object asits
parent. Players can change the parent of objects they own, including themselves with

the @hpar ent command:
@hpar ent <object> to <new- parent - obj ect >

The list of an object’s parents and ancestors is called its parent hierarchy. You can

look at an object’s parent hierarchy using the @ar ent s command. The syntax is
@ar ents <obj ect>. Toseealist of your own parent and ancestors, type:

@arents ne

(If the system respondswith | don’t understand t hat , ask awizard to make
you a builder.)

Someone who has afairly fancy player class (in this case on LambdaM OO) might
have a parent hierarchy that looks like this:

Yi b(#58337)

Sick's Sick Player O ass(#49900)

Sick's Slightly Sick Player C ass(#40099)

Sick's Sick of Spam player class(#59900)

Detail ed Pl ayer Cl ass(#6669)

Ceneri c Super_Huh Pl ayer (#26026)

Politically Correct Featureful Player C ass Created Because
Nobody Woul d @opy Verbs To 8855(#33337)

Pl ayer O ass hacked with eval that does substitutions and
assorted stuff(#8855)

Experimental GQuinea Pig Class with Even Mre Features of
Dubi ous Utility(#5803)

Ceneric Player Class Wth Additional Features of Dubious
Utility(#7069)

generic progranmer (#217)

generi c buil der (#630)

CGeneric LanbdaMOO Citizen(#322)
Frand's player class(#3133)

Ceneric Mail Receiving Player(#100068)
generic pl ayer (#6)

Root O ass(#1)

What’'s Going On, Here? 43

mailto:@Copy

A brand new player on LambdaM OO would have a parent hierarchy that looks
likethis:

Bi t _Bl aster (#200119)

generi c buil der (#630)

Generi c LanbdaMOO Citizen(#322)
Frand's player class(#3133)

Ceneric Mail Receiving Player(#100068)
generic pl ayer (#6)

Root O ass(#1)

A brand new player on another MOO would likely have a parent hierarchy that
looks like this:

New Grrl_On_The_ Bl ock(#1438)
generic buil der (#4)

Frand's pl ayer class(#90)

Ceneric Mail Receiving Player (#40)
generic pl ayer (#6)

Root O ass(#1)

(Note, however, that this may differ, as the wizards of each MOO can change the
default starting player class for new players.)

In principle, it is vitally important to understand the workings of a player class
you adopt, and to trust its owner and the owners of its ancestors. You can use the
exam ne command to see an object’s owner; many MOQO’s also provide a specific
command to do this, e.g. @wner . At the very least, you should be aware that the
owners of your player class and its ancestors are in a position to intercept and
monitor your pages, intercept and read your private MOOmail, change your name
and/or remove or change your aliases, and any number of other acts that you might
normally expect to be your prerogative alone.

In practice, people often select a player class based on the recommendation of
friends or experienced acquaintances, and trust the various player class authors by
reputation. The purist in me would like to say that one should acquaint oneself with
all the possible player class alternatives, read the help text and the verbs of each,
understand what each does, and then select a player class based on the
trustworthiness of the authors, and which is no fancier than one’ s particular needs at
the moment. (The more elaborate the player class, the more quota your player-object
takes up.) Notethat it istrivial to change your parent to afancier descendent of your
current player class. Itislesstrivial to change to a different branch of the player class
“tree”, because doing so can mean having to give up messages or morphs (see
glossary) in which one may have invested afair bit of time and creativity.

There is generally sufficient social pressure on player class owner/authors not to
spy or otherwise abuse their privileged position that it isn’'t a common problem.
There was an incident several years ago on LambdaM OO in which the author of a
popular player class was accused of intercepting pages which his girlfriend received
from a perceived rival. There was an outcry when this was discovered, and the code
was revised to the satisfaction of all concerned. In another instance, a player dared
all comers to do their worst (the point being to demonstrate that in the face of any

44 What's Going On, Here?

attack one could still MOO serenely without needing an arbitration system). The
owner of one of this person’s player class ancestors removed the challenger’s name
and aliases and changed them to something highly unflattering. The names and
aliases were subsequently returned to their original owner. These instances are rare,
but one should still be advised that adopting a player class entails a certain degree of
calculated risk.

One should be especially wary if a player class has unreadable verbs. Type:
@li spl ay <pl ayer-cl ass- obj ect >:
to list the verbs. (The colon is part of the command.)

Knowing the commands available to you will give you better use of them. For
more information about a particular command, try either of:

hel p nme: <command>
hel p <conmand>

(Help text had not been standardized at the time these early player classes were
written.)

Documentation for the oldest player classes that nearly every player on every
MOO has in common is sometimes non-existent or difficult to find; here is a brief

summary of what these basic player classes do. For a detailed explanation of any of
these commands, see the command summary in Appendix A

e Generic Player: Provides the most basic set of commands, including hone,
hel p, @lescri be, @ender, @ui t, @asswor d, and @mi | - opti ons.

* Generic Mail Receiving Player: With the exception of @mil -options
which is (incongruously) provided on the generic player, this player class
provides all the commands for reading and sending MOOmail, including @i | ,
@end, @ ead, @ext, and @ubscri be.

+ Frand’'s Player Class: Frand is one of LambdaMOO'’s oldest and most venerable
and innovative players. So much so, in fact, that this player class is now included
in LambdaCore itself, and has been integrated into JHCore Many of the verbs on
Frand's player class can be said to “break” or “transcend” the VR, including @o,
@ oi n, @ddr oom @ oons, @ways, and @ ef use.

* Generic Builder: This player class provides the minimum set of commands
needed to add objects to the MOO’s database, e.g. build rooms. They include

@reate, @ig, @ecycle, @hparent, @udit, @arents, @ock, and
@ont ent s.

* Generic Programmer: In order to write programs on a MOO, you must have
this player class in your ancestry and have gotten a programmer bit (the usual
procedure for getting one is to ask awizard). The programmer bit gives you the
authority to program; the generic programmer player class gives you the
necessary commands to do so. These commands include: @r operty, @erb,
eval , @rogram @i spl ay and @unp.

What’'s Going On, Here? 45

mailto:@describe

Setting M essages

Yib arrives in a shower of sparks.

Q: How does she do that?
A: With messages.
Recall that a property is a named piece of data associated with an object. A

message is a special kind of property whose name ends with _nmsg. The purpose of
messages is to give users a way to customize themselves and objects they own
without having to learn how to program. Many kinds of objects have messages.

To see alist of the messages on an object, type:
@ressages <obj ect >

Player objects have a great many messages, and each player class in a player's
ancestry typically adds afew more, so typing:

@ressages ne

will probably generate along list! Let’slook at two player messages:

@elf_arrive #3133 is "%tel eports> in."
@sel f_port #3133 is "%<tel eports> out."

If you transport yourself within the MOO using either the @o or @ oin
command, the system will process these messages (prepending your name (if it is
absent) and conjugating the verb “teleport”) and then display them to the
appropriate viewers — at the location you are leaving and at your destination. To
customize my departures and arrivals, then, | would change these messages. There
are two syntaxes for doing so:

@et ne.self_arrive _nsg to "Yib arrivesin ashower of sparks."

@et ne.oself _port _nsg to "Yib disappears in a sudden puff
of snoke."

or:

@elf_arrive ne is "Yib arrives in a shower of sparks."
@sel f_port ne is "Yib disappears in a sudden puff of
snoke. "

Because silent teleporting (sneaking into a room without people knowing you are
there) is frowned upon in most MOQOs, the system displays your name at the
beginning of these messages if it isn't otherwise present. Furthermore, because some
players may have their gender set to plural, the default messages use the syntax
%<t el eport s>tosignal that “teleports’ is averb that should be conjugated.

The messages on different player classes (including the ancestors of your player
class!) were created by different people at different times, and many of them were
created before some now-common conventions were established. Unfortunately,
many of them aren’t documented, or are documented poorly. Historically, people
figured out and set most of their own messages by listing them (@ressages ne),

46 What's Going On, Here?

looking at the combination of their names and content, and (often) trying them out
with afriend.

Here, then, is alist of all the messages that you are likely have defined on your
player object as a new arrival on a MOO that uses LambdaCore along with a few
comments about some of the messages' idiosyncrasies. They are presented as if you

had typed @messages ne, and the syntax for setting them is the same as that
displayed by the system when it lists them.

@ore me is "*** MORE *** om lines left. Do @mwre
[rest|flush] for nore."
@or e is the message displayed if you have used the @agel en command to set
a fixed page length. The syntax [rest | fl ush] means that you have the option of
typing @more rest or @ore flush to print all of the remaining output, rather
than just one additional page. Type @mr e by itself to see just the next page.

@age_absent ne is "W is not currently logged in."
@age_absent is the message that someone sees if e pages you when you are
logged off. In this message, your name will be substituted for %\.

@age_origin me is "You sense that %N is |ooking for you in
% ."
@age_ori gi n isthe message that someone sees as when you page em, before
the actual content of your paged text is displayed. Your name is substituted for %N
and the name of your location is substituted for % .

@age_echo me is "Your nessage has been sent.”

@age_echo is the acknowledgement message that someone sees when e pages
you.

@oin nmeis "You join %."
This message is displayed to you when you use the @ oi n command to teleport
to another player’slocation. The name of the player you are joining is substituted for

OBN.

@bj ect_port nme is "teleports you."

This message is transmitted to an object it when you teleport (i.e. @move) it.
(See the section on moving objects, page 38) Your name (followed by a space) is
automeatically added at the beginning.

@ictimport me is "teleports you."
This message is displayed to a player if you teleport em somewhere. Y our name
(followed by a space) is automatically added at the beginning.

@hing_arrive ne is "9 teleports % in."
This message is displayed to your location when you teleport an object either to
yourself or to the room you are in. Your name is substituted for %98 and the name of
the object being teleported is substituted for %n.

What’'s Going On, Here? 47

mailto:@more

@thing_port me is "% teleports % out."
This message is displayed to the room athing isin (if it is in a room) when you
teleport that thing to a different location. Y our name is substituted for % and the
name of the object being teleported is substituted for %n.

@hing _port ne is "You teleport 9%."
This message is displayed to you when you teleport an object. The name of the

object you are teleporting is substituted for %.

@l ayer _arrive ne is "% teleports % in."
If you teleport (i.e. @move) a player, this message is displayed to the room to
which that player is moved. Your named is substituted for %9 and the name of the
player being teleported is substituted for %.

@pl ayer _port nme is "% teleports % out."
If you teleport (i.e. @move) a player, this message is displayed to the room from
which that player isremoved. Your named is substituted for % and the name of the
player being teleported is substituted for %.

@l ayer _port ne is "You teleport %. "
This message is displayed to you when you teleport (i.e. @rove) a player. The
name of the player you are moving is substituted for %n.

@elf_arrive ne is "%tel eports>in."
This message is displayed to your destination when you teleport somewhere (e.g.

with @oin or @o). Notice that it is not a complete sentence. Your name is
automatically prepended to the beginning of the message if it doesn't appear

somewhere else within it. Setting this message to the empty string (" ") will result in
a silent arrival, which is contrary to good manners, and in some places might be

construed as a form of spying. The construct %<t el eports> causes the verb
“teleport” to be conjugated according to your .gender property.

@sel f_port me is "U%tel eports> out."

This message is displayed to your point of departure when you teleport out.
Again, your name is prepended if it doesn’t appear somewhere else in the message.
Setting this message to the empty string will result in a silent departure. While not
considered as bad as a silent arrival, it can be unsettling to others in the room not to
know that you have left. . The construct %<t el eport s> causes the verb “teleport” to
be conjugated according to your .gender property.

@elf_port me is ""
This message is displayed to you when you teleport somewhere. It is blank by
default.

@age_refused ne is "% refuses your page.”

This message is displayed to someone if e tries to page you but you have refused
pages from em. (See page 30) Your name is substituted for %N.

48 What's Going On, Here?

@hi sper _refused me is "% refuses your whisper."
This message is displayed to someone if e tries to whisper to you and you have
refused whispers from em. Your name is substituted for %N.

@mail _refused me is "% refuses your mail."
This message is displayed to someone if e tries to send you mail and you have
refused mail from em. Y our name is substituted for %\.

What’'s Going On, Here? 49

Chapter 4 —Using the Mail System and the Editors

Reading Mail

This section explains how to read mail, how to examine and set mail options
that pertain to reading mail, and message sequencing, which is away of specifying that
you wish to read or see a list of mail messages that meet certain criteria that you
specify. Sending mail is addressed in the section that begins on page 57.

You have new mail (1 nessage). Type 'help nail' for info on
reading it.

The simplest way to read mail that someone has sent you is to type:
@ext on me

and to keep doing that until the system responds, You have no next nessage.

The M OO supports a generalized concept of a mail recipient, which is any object
that can receive mail. The two categories of mail recipient are players and mailing
lists. Each stores a collection of mail messages, and the commands for reading mail
on yourself and on a mailing list are the same. Mailing list names are preceded by
the asterisk character (*). In offline discussions, mailing lists are sometimes referred
to as “star-lists’.

When you log on, the MOO will tell you how many new messages you have (if
any), and how many new messages are on *lists that you subscribe to. This implies
two things: one, that there is a concept of subscribing to *lists, and two, that the
system keeps track of which messages on a *list you've read and which you haven't.
This information — what lists you’ re subscribed to and how far you’ve read in them —
is stored on your player object in the . current _nessage property. Only you and
wizards can examine this property, which means that you have some privacy
concerning what *lists you choose to read. However, *lists themselves can record the
fact that you read messages on them (or even @peek at messages on them), and that
information is then available to the owner of the *list if e chooses to accessit.

To start reading mail on a *list, you use the same command described above for
reading mail on yourself, except that instead of typing @ext on ne, you'll type:
@ext on <*|ist>

Note that reading any mail message on a list subscribes you to it. If you want to

read all or part of a *list without subscribing to it, use the @eek command (see page
55).

51

mailto:@peek

When you first get your MOO character, you will not be subscribed to any lists.
To see what mailing lists exist that you might subscribe to, type:

@mnsubscri bed*
or:
@ubscri be

To subscribeto a*list, type:
@ubscri be <*list>

for example, @ubscri be *News. Or read a message on it. To read the first message
on alist to which you aren’t subscribed, type:

@ext on *|ist
To see what mailing lists you’ re currently subscribed to, type:
@ubscri bed

You can get a sense of a *list’s intended topic by reading its description. The
system is able to recognize mailing lists by the asterisk, so you don’t need to know a
list’s number to do this:

| ook *News
| ook *Chatter

If you've been logged on for a while and want to see if there are any new posts
on lists you' re subscribed to, you can type:

@n
An extremely useful command is:
@n

(Think “next new”.) This command will read the next new message on yourself or

on any *list you are subscribed to. Unlike @ext , if it comes to the last new message
on one list, it will start with the first new message on your next list, and so on until

all new messages on all lists have been read. An alternative, if you want to read all
your new mail in one shot, is the command:

@ anm

(Think “read all new mail”.) This will display the contents of all new messages on all

your *lists non-stop. At the end, you will be presented with ayes/ no prompt asking
whether you got it all. If you didn’t (for example, if you were disconnected in the
middle) the system won’'t update the list of messages you've read, so that the same
ones will still appear as new/unread messages when you next log on.

Now let’s take a more detailed look at the @ext command, along with its
counterpart, @r ev, combining them with the concept of your current folder and your

¥ 0On LambdaM OO thisis verylong. You might want to use alogging facility (this would be provided
by a client program) or, aternatively, a command called @et send-nai | - cat al og on feature object
#27325.

52 Mail System and Editors

current message on each folder. A folder is another name for a mail recipient, either
yourself or a*list. (Think of afolder with a set of messagesin it.)

If you type @ext or @r ev with no other arguments (specifiers), e.g,

@ext
@r ev

the system will print the next (or previous) message from your current folder, and
will update its record of your current message on that folder. Suppose you have five
old messages (on yourself), numbered 1-5, and five new messages, numbered 6-10.
(Your current folder is and will always be yourself unless you change it, using the
@rai | - opti ons command, detailed below.) Your current message is 5 (the last one
you read). If you type @ext, you will see message 6 on yourself, and your current
message will be set to 6. If you type @ext again, you will see message 7 on yourself,
and your current message will be 7. If you type @r ev, the system will print message
6, and will reset your current message to 6, and so on.

Now suppose you decide to read some messages on a *list. For the sake of
illustration, we'll call it *chatter. Y ou would type:

@ext on *chatter

and the system would print the next message on *chatter, where “next” means
“the next message that you haven't read yet”, or, to put it another way, the next

message after your current message on that folder. Note that your next message on
that folder might be different from my next message on that folder, because you and
I might not have read up to the same point. To continue reading messages on
*chatt er, you would type @ext on *chatter repeatedly until you either came to
the end of the list or had read as many messages as you wanted to.

You can also use @ext and @rev to read more than one message at a time,
either on yourself or on another list:

@ext 3
@ext 3 on *chatter
@ext <nunber> on <*|jst>

Y ou can also tell the system to treat the folder on which you most recently read a
message as your current folder, instead of your current folder always being yourself.
To do this, you would set one of your mail options using the @il - opti ons
package. Options packages are simply groups of settings that you can use to
customize your M OOing experience so that certain system behaviors are more to your
liking. Suppose that you prefer not to have to type @ext on *chatter each time,
but would rather access the next message on that folder with a plain @ext
command with no arguments. To do this, type:

@rai | -option +sticky
This makes the pointer to your current folder “stick” to the folder you last read a
message on, rather than always reverting to yourself, and all mail commands will

apply to that folder until you specify a different one. Some people find this more
convenient. If you try this option and don’t care for it, you can reverse it by typing:

@rai | -option -sticky

Mail System and Editors 53

Besides reading messages, you can also list message headers. A message header
consists of a message number, the date it was sent, who sent it, and either its subject
heading or the first few words of the first line (if there is no subject heading). One
reason for listing message headers is to take advantage of the fact that you are not
stuck just reading the next message on every list you're subscribed to. Rather, you
can read messages selectively, either singly or in groups, if you so choose. Of course,
you can list message headers selectively, too. This ability is a powerful tool when you
want to search alist for a particular message, set of messages, or kind of message.

@mail

The @mi | command shows you a list of messages, with summary headers. It
can be used by itself, with no arguments, but it is an especially powerful searching
tool when used with a specifier called a message sequence, which is a word or set of
words that specifies a set of criteriathat a message may or may not satisfy.

@i | typed by itself will show you the summary headers of the last 15 mail
messages (you can change the number, with another mail-option) on your current
mailing list. You could also type @mai| on *chatter to perusethe last 15 posts on
that mailing list, and so on.

Two typical usesfor @i | areto preview messages on alist before reading them,
or to try to identify a particular post that you want to re-read, respond to, or cite.

There are many useful message sequences that you can use to limit or shape the
output you get. Here are afew examples:

@il new on ne lists new messages for you

@mai | 43 on *think-tank lists message 43 on *t hi nk-t ank

@mai | 43-53 on *think-tank lists messages 43-53 (inclusive) on
*t hi nk-t ank

@rai | next3 on ne lists the next three messages on you

(note, no colon or space between next
and the number)

@rai | prev4 on ne lists the previous 4 messages on you
@mil first:5 on *thene liststhe first 5 messages on *t herre
@mil last:6 on *B: Shut down lists the last 6 messages on

*B: Shut down
@il 1-1ast on *newbies lists all the messages on * newbi es
@mil 1-$ on *newbies (The $ sign stands for “last”.)
@mai |l cur-$ on *geography lists messages headers from your

current message through and including
the last message on * geogr aphy

54 Mail System and Editors

The above are based mainly on message numbers, your current folder, and your
current message in agiven folder. Here are some others that are even more flexible:

@rai | cur lists your current message on your
current *list

@mi | from Tower on *Research lists messages that Tower has sent to
*Resear ch

@mi | subj:infrastructure lists messages on your current *list with
“infrastructure”’ in the subject heading

@rai | before: 21- Mar lists messages on your current folder
that were sent before March 21

@rai |l until:30-Jun lists messages on your current folder
that were sent on or before June 30

@rai | after:04-Jul lists messages on your current folder
sent after July 4

@i | since: 31-Cct lists messages on your current folder
sent on or after October 31

@i | since:01-Dec lists messages on * Publ i ¢c- ARB posted

body: unt henely on *Public- ARB | since December 1 that have
“unthemely” in the body of the
message. (Note, body searchestake a
long time and should have an
additional qualifier to narrow the
search.)

If you do not specify a folder when using the @mai | command, you will see the
specified message headers on your current folder. If you do specify a folder (*list),
you will see the specified message headers from that list (and if your mail options are
set to +sticky, your current folder will be set to that *list).

Seealsohel p mai| and hel p nmessage- sequences.

@read, @peek

The @ ead and @eek commands display the full text of one or more messages
rather than just the headers. They can take the same message sequence specifiers

that the @i | command does. So, for example, you might do:

@ead new on ne
@eek last:5 on *think-tank

Mail System and Editors 55

mailto:@peek

The differences between @ ead and @eek are these:

e (@ ead subscribes you to the specified *list if you were not already subscribed.
@eek does not.

e @ead sets your current folder and current message to the last message read.
@eek does not.

e @ead suppresses the message if you have refused flames from the sender.
@eek doesnot. (Seehel p @efuse.)

@rmm

The @ mmcommand (think ReMove Message) removes one or more messages. It
takes the same message sequence specifiers as @mi | , @ ead and @eek. You can
remove messages from yourself. You can remove messages that you have sent to a
public *list (unless its owner has specified to the contrary) and you can remove

messages from *lists that you own.

The preposition for the @mnmm command is different: Whereas you @ ead
<nessage- sequence> ON <folder> you @nmm <nessage-sequence> FROMV
<f ol der >.

Messages that you have removed using the @ nm command aren’t really gone
until you either log out or @ nmsome other messages, and you can “unremove” them

with the @inr rm command. While they are in this indeterminate state, they are
called zombie messages.

Seealsohel p @nrmmai | and hel p zonbi e- nessages.

@skip

Skip to the end of your current list. A good example of when you might choose
to use this command is when you’' ve been away from the MOO for a while and have
alots and lots of new messages on a*list. Some lists you may want to read all of, but
with others you may just want to skip to the end without reading all the intervening
messages.

@renumber

Some people like to renumber their messages from time to time, while others

never do. When you remove a message (with the @ nmcommand), its number is not
re-used. If you were to remove a message and subsequently list your messages, you

would see a gap. Renumbering messages assigns new numbers to the messages
(starting with 1) and removes the gap. So, if your current messages were numbered 1,

3, 5 and 17, and you typed @ enunber, the same set of messages would now be

56 Mail System and Editors

mailto:@refuse
mailto:@unrmmail

numbered 1-4. It's a matter of taste, mostly. Note, though, that while it is fine to
@ enunber yourself, it can cause problems if you @ enunber a *list that you own.
The reason is that the record of everyone’s current message on that list is kept not on
the list, but on the players who subscribe to that list. If you @ enunber a*list, then

the @ n command mi %ht indicate to a player that the list has new mail, but the @n
command would say that there are no new messages. Thisis hardly catastrophic, but

if you own a*list, it’ s better to let gaps in the message numbering stay.

*news

The *news mailing list is a regular list, like any other, except that only wizards
can send to it, and wizards can cause designated messages to appear when a player
types the command news. But you can read it like aregular mailing list. This would

come in handy, for example, if you wanted to review an old *news message that
wasn't actually appearing in the newspaper any more (because a wizard had removed

its current-news designation).

Sending Mail (and getting a start on using thein-M OO editors)

I’ s good to get comfortable with the mail editor, because then you can send mail
to individuals and compose posts to mailing lists and focus on what you have to say
(write) rather than on the mechanics of writing it. Furthermore, the note editor and
the verb editor work almost identically, so you can apply your mail editor skills later
if you choose to program your own objects.

Practiceis key. But when people practice, especially at the beginning, they make
mistakes, and making mistakes feels embarrassing (to many people), and so they
don't practice. My proposed remedy for this is to have you start by sending mail to
yourself until you feel ready to go public, so to speak.

A bit of reassurance: You can’t break the editor. If you get completely stuck, just

log off — exit your client application or simply disconnect. In a minute or two, you’ll
be moved from the editor back to your home, and no harm has been done. So relax.

Beginning and Ending a M ail Session

A normal mail editing session begins with @end and ends with send. The
difference is in the @sign. If you change your mind about sending, you can type
abort and your editing session will be thrown away. You can @end to a person, to
amailing list, or to any combination. Here are afew examples:

@end Yib
@end Yib Tower Drippy |ovecraft Veren skeptopotanus
@end *Thi nk- Tank

Mail System and Editors 57

@end Yib *Thi nk- Tank
@end ne

(Thelast of these iswhat you would use to send mail to yourself.)

There is no case-sensitivity here, as in most things within the MOO except for
passwords.

After beginning with @end, you will be prompted for a subject line. You may
leave it blank if you wish by typing the <ent er > key.
Once in the editor, you can type | ook at any time to see a list of available

commands. Basic commands fall into three categories. adding text, displaying text,
and changing text.

Adding Text

There are two basic ways to add text. In the editing rooms, what you say (with
the say command) gets added to the text you are editing. That’s oneway. The other
way isto type the word

enter

on aline by itself, followed by any number of lines of text, followed by a period on a
line by itself. You can paste in lines of text from your computer’s clipboard, this way,
if you want to. This is the method that | prefer, but it’s strictly a matter of taste.
NOTE: Most client programs will wrap words to fit a reader’s screen width, and
trying to do that manually makes the text funny-looking for some people, and some
of those will complain. As a point of style, you should type each paragraph as if it
were one very long line, and separate your paragraphs with a blank line (by pressing
the <enter> key twice in arow).

Displaying T ext

After you' ve entered some text, you’ll probably want to take a look at it and see
whether you like it, or whether you want to adjust it. You can do either of the
following:

pri nt
or:
list
Thefirst, pri nt, displays al the text as it would be seen by the recipient. Thisis

especially good for proofreading. The second, | i st, shows you the lines with their
numbers. Thisis helpful because when making changes, you need to specify aline or

lines by number. If the postislong, | i st may only print out some of thelines. You
can forceit tolist all the lines by typing:

list 1-$

58 Mail System and Editors

In this context the $-sign is a symbol that means “the end”. You can list any
range of numbers.

Changing Text

To change something, use the subst command (think “substitute’), which can
also be abbreviated as s:
subst /kind of fun/a whole ot of fun/5
subst /pretty good/fabul ous/1-$
s /so-sol/great/3-16
The first form will make the substitution in line 5, the second will make the

substitution in all lines, the third in lines 3 through 16. The "/” character is a
separator. It can actually be any character that doesn’'t appear in the text you're

substituting.
To delete one or more lines, use the del et e command (del for short):

delete 5
del 3-8
del 1-%

The editor will print out the line or lines deleted, for verification. Heads up:
When you delete a line, the editor will move the insertion point to that line. This
means that if you ent er text again, it will appear in place of the line or lines you just
deleted. To enter text elsewhere, usethei nsert command (i ns for short):

insert 1 Get ready to insert text before line 1.
insert 5 Get ready to insert text before line 5.
ins $ Get ready to insert text at the end.

After thei nsert command, you must still type enter to actually add text to your
message. Again, type aperiod on'aline by itself when you' re finished entering lines.

Send it Off!

Type send to send the mail, or abor t if you change your mind.

Mail Options

You can customize many aspects of how your mail messages are displayed and
handled through an interface called an options package, which is simply a group of
settings plus some commands to view and alter those settings. In the section on

reading mail, you were shown @i | - opti on +sticky. In thissection, I'll explain

Mail System and Editors 59

what each mail option means. You can type hel p @mil - opti ons go get a brief

reminder of this section.

To list al your current mail options, type:

@rui | - options

Y ou will see something like this:

Current mail options:

-i ncl ude

-al
-fol Il owup

- nosubj ect

- expert
-enter

-sticky

- @i

- manynsgs
-replyto

- net mai
-expire
-resend_forw
-rn_order

-no_auto_forward
-expert_netfwd

- news
-no_dupcc

-no_unsend

- @insend

Oiginal nessage will not be included in
replies.

Replies will go to original sender only.

No special reply action for nmessages with
non- pl ayer recipients.

Mail editor will initially require a

subj ect line.

Novi ce mail user

Mail editor will not start with an inplicit
"enter' conmand.

Teflon folders: mail conmmands al ways
default to 'on ne'.

Def aul t nessage sequence for @il

| ast: 15

WIlling to be spammed with arbitrarily many
messages/ headers

No default Reply-to: field

Recei ve MOO-nai |l here on the MOO

Unkept messages expire in 30 days (default)
@esend puts player in Resent-By: header
.current _nessage folders are sorted by | ast
read date.

@net f orward when expiring nessages
@etforward confirns before emailing
nessages

the 'news' comand will show all news

| want to read nmail to nme also sent to
lists | read

Peopl e may @nsend unread nessages they
send to ne

Def aul t nessage sequence for @nsend:
last: 1

The items in the first column are the options themselves, which you can set.
Most options are either on or off. Inthe example above, every option is preceded by a
-, so all options are turned off. A few must be set to one of a selection of permissible

60 Mail System and Editors

mailto:@mail-options
mailto:-@mail
mailto:@unsend
mailto:-@unsend

text values. The syntax for setting (turning on) or resetting (turning off) optionsis as
follows:

@rai | -option +<fl ag>
@rai | -option -<flag>
@i | -option !<flag>
(Thelast two are equivilent.)
OR (if required):
@rai | - opti on <opti on>=<val ue>
Let’s go through them one by one.

@rai | - option +incl ude
@rai | -option -include
Sooner or later you are bound to see a mail message that 1ooks something like
this:

Message 122 on *Features (#42343):

Dat e: Tue Jan 18 17:41:37 2000 PST
From Yi b (#58337)
To: *Feat ures (#42343)
Subject: Re: @arties
Dat e: Tue Jan 18 14:24:01 2000 PST
From Gol dnund (#96860)
To: *Feat ures (#42343)

Subject: @arties

Good work Yib.

It would be nice if the roons would be sorted by

t he nunber of occupants rather than by al phabet.
and you should add it to the @elp.

VVVVVVYVYVYVVYV

t hanks

Done, and done. Thanks for the suggestions.

Embedded in this message is a prior message, each line of which is preceded by
the “>" symbol. Sooner or later you’'ll wonder, “How does she do that?” The @ epl y
command does this automatically if the include mail option is turned on.
Goldmund’ s message was message 121 on *features. When | typed @eply 121 on
*f eat ur es, the mail editor automatically created the header and included the text of
the message | was replying to. | then appended my own lines of text.

Note: | alsotypedto *features to send my post to the mailing list as part of
an ongoing discussion (in this case, discussion of afeature verb I’ d written) instead of

only to Goldmund. The @ epl y command directs the reply to the author of the post

Mail System and Editors 61

mailto:@parties
mailto:@parties
mailto:@help

you're replying to — and not the list you read it on — unless you have either the al |
option or thef ol | owmup option turned on.

@rai | -option +all
@rai | -option -all
If | had set the+al | mail option, then my reply would automatically have been
to Goldmund and *f eat ur es.

@rai | -option +foll owp
@rai | -option -foll owup
It gets better. If the +f ol | owup option is set, and | @ epl y to a message, the
message will be to “the first non-player recipient, if any”. What's a non-player
recipient? A mailing list. What if you're replying to a private message from a player
and not a message on a mailing list (i.e. what if there are no non-player recipients)?
Then it uses whatever you've set the al | flag to, either the original author (-al 1) or
all the original recipients (+al |).
Reminder: You can override the designated recipients from within the mail
editor at any time with the t o command. To Goldmund would direct a post just to
Goldmund. To *features would direct it just to *features.

@rai | - opti on -nosubj ect
@rai | - opti on +nosubj ect
When you type the @ end command, the system prompts you to enter a subject
line, unless you have the +nosubj ect option set.

@rai | -option +expert
@rai | -option -expert
The online documentation tells you that the +expert mail option suppresses
“varying annoying messages’. What are these various annoying messages? It turns
out that there's only one. If you are -expert and receive mail, you will see
something like this:

You have new mail (22) from Yib (#58337).
Type '"help mail' for info on reading it.

If you are +expert, you won't see the line that says, Type 'help mail' for
info on reading it. Rog (the author of this code) got tired of seeing this
message all the time, and so added this option to suppress it plus any other messages
he decided to add later. No other messages suggested themselves, so that’s all, folks.

@rai | - option +sticky

@rai | -option -sticky
This option was described in the segment on reading mail. It affects the @i | ,
@ ead, @eek, @ext, @rev, and @nswer (same as @ epl y) commands. If the
option is set to +sti cky, any of the above commands will apply by default to the

mail recipient (yourself or a *list) you accessed most recently. If its set to - sti cky,
your current mail recipient (current folder) will always be yourself.

62 Mail System and Editors

@rai | -option +netmail
@rai | -option -netmail
Y ou can choose whether to receive your MOOmail in-MOQO (- net mai |), or have
your MOOmail automatically forwarded to your registration email address
(+net nai |). The latter saves space (for the MOO), but the trade-off is that if you
receive mall while logged on, you don’'t get to read it until it reaches your regular
email address, and for some people that’s a hassle.

@rai | -option +resend_forw

@rai |l -option -resend_forw
You can either @orward or @esend a message (on yourself or a *list) to
another player or another *list. These two commands are awfully similar, differing
only in what the header information looks like, possibly modified by the

resend_f orw mail option. Here are some examples to show you what | mean: |
started by sending a message to myself, then forwarded that” message to another

character, Yib's Assistant.
Here is the original message that | sent to myself:

Dat e: Wed Jan 19 16:28: 08 2000 PST
Fr om Yib (#58337)
To: Yi b (#58337)

Subj ect: Secret

La plume de nma tante est dans |le jardin.

When you @ or war d this message, you get:

Message 7:

Dat e: Wed Jan 19 16:28:30 2000 PST
From Yi b (#58337)

To: Yi b' s_Assi stant (#61050)
Subject: [Yib (#58337): Test]

Dat e: Wed Jan 19 16:28: 08 2000 PST
From Yi b (#58337)

To: Yib (#58337)

Subj ect: Secret

La plunme de nma tante est dans le jardin.

Notice that there are two header blocks, and brackets around the original subject
Ikglne.k If you @ esend the message, with -resend _forw, you get only one header
ock:

Mail System and Editors 63

Message 8:

Dat e: Wed Jan 19 16:28:38 2000 PST
From Yib (#58337)

To: Yib (#58337)

Subj ect: Secret

Resent - By: Yi b (#58337)

Resent - To: Yi b' s_Assi stant (#61050)

Oiginal -Date: Wed Jan 19 16:28: 08 2000 PST

La plunme de nma tante est dans le jardin.

@r esend with +r esend_f orw generates just one header, but this time there are
two “Original” lines instead of “Resent-" lines:

Message 9:

Dat e: Wed Jan 19 16:28:56 2000 PST
From Yi b (#58337)

To: Yi b' s_Assi stant (#61050)

Subj ect: Secret
Oiginal-Date: Wed Jan 19 16:28:08 2000 PST
Oiginal-From Yib (#58337)

La plume de nma tante est dans |le jardin.

@rai | -option +no_auto_forward

@rai | -option -no_auto_forward
Mail messages are one of the bigger database hogs on a MOO. Therefore, on
some MOQOs, mail is automatically deleted from players and *lists after a certain

amount of time (usually 30 days). By default, when your messages expire, they are
forwarded to your registration email address. Setting this option inhibits that

forwarding.

@rai | -option +expert_netfwd
@rai | -option -expert_netfwd
Y ou can forward MOOmail messages on yourself or on *lists to your registration
email address with the @et f or war d command. By default, the system will display
your current registration email address and prompt you for confirmation. Setting this
option inhibits that.

@i | -option nmanynsgs i s <nunber>
@rai | - opti on manynsgs <nunber >
@rai | - opti on manynmsgs=<nunber >
@rai | - option -manynsgs
Suppose you typed @ead new on *chatter and suddenly found yourself
spammed with 300 messages! The above option gives you some control over that

kind of situation. If you specify a number for the manynsgs option, you will be

64 Mail System and Editors

given_a yes/no prompt to continue. The last form, - manynsgs, inhibits this
ehavior.

@rai | -option @mil <nessage-sequence>
@rai | -option @mil is <nessage-sequence>
For example:

@rai | -options @il =new

On most MOOs, typing the command @rai | is equivalent to typing @mi |
| ast: 15 to show the last 15 messages on your current folder. There are other
possibilities, such as @ail new or @mil 1-I1ast, and you can specify how you
want plain @rai | to behave by using this option.

@il -option replyto <recipient> [<recipient>. ..]
@rai |l -option replyto is <recipient> [<recipient>...]
@rai | -option -replyto
The above option automatically inserts a “Reply to:” field in any messages that
you compose using @end or @eply to indicate that replies should be sent to
someone other than the original sender. The last form resets this option so that no
“Reply to: ” field isinitially inserted.

@rai | -option rn_order=<order>
@rai | -option rn_order <order>
This option controls the order in which folders will be listed when you use the

@n and @ubscri bed commands. The options for <or der > are:

read Folders are sorted by last read date. Thisisthe default.
send Folders are sorted by the date you last sent to them.
fixed Folders are not sorted initially.

If you specify rn_order=fixed, you can sort your folders using the
@ubscri be command, and they will stay in that order afterwards. For example, you
can type @ubscri be *random after *life, or @ubscri be *random before
*|ife. By doing this several times, you can re-order all your folders.

@rai | -option expire <tine-interval >
@rai | -option expire is <tine-interval >
@rai | -option expire=<tine-interval >
By default, mail messages expire after a certain time period (usually 30 days).
Y ou can use the above option to change this. <time-interval> is a number of seconds
unless you specify units, e.g. 5 weeks or 2 nont hs.
A negative number or:
@rai | -option +expire
disables expiration entirely. You can keep a particular mail message from expiring
with the @eeprai | command.

Mail System and Editors 65

mailto:@mail
mailto:@mail
mailto:@mail=new

@rai | -option -expire
sets your message expiration time to MOQO' s current default.

@rai | -option +no_unsend

@rai | -option —no_unsend
LambdaM OO provides the ability to take back a MOOmail message sent to an
individual if the message has not yet been read, and has not been netforwarded.

Setting this option prevents people from being able to @insend messages they have
sent to you.

@rai | -opti on @nsend=<nmessage sequence>
@rai | - option - @nsend
If you wish to retract a message you just sent to someone, you can try @nsend
from <pl ayer>. If you don't specify which message(s) you wish to @nsend, the
system will use | ast: 1, meaning the last message you sent. You can’'t look at
another person’s mail headers to specify message numbers, but you can specify other
parameters such as subj : <part of a subject headi ng> or si nce: yest er day,

and so on. You can do this for a single invocation of @nsend, or you can set such a
filter to be the default, by using this mail option.

Using thein-M OO Editors

There are three editors provided with LambdaCore: the mail editor, for editing
and sending MOOmail, the verb editor, for editing and compiling verbs (MOOcode),
and the note editor, for editing all other bodies of text. Each editor has a few unique
commands, e.qg. you send amessage, conpi | e averb, and save other text, but other
than that, they are fundamentally the same, and if you can use one, you can use the
others.

Editors in the MOO are implemented as special rooms! These rooms simulate a
player being alone (if other people are using the editor simultaneously, you will not
see them), and in these rooms, the verbs say and enot e are programmed to work

differently — specifically, say and enpt e are ways of inserting or appending text to
whatever you are editing.

These are line-based editors, which means that text is added a line at a time.
Thereisn't acursor, asthere isin most screen editors. Instead, there is the concept of
an insertion point, and this number represents where new text will be added: between
two lines, before the first line, or after the last line. Lines can in fact be quite long —
as long as a conventional paragraph, in fact, comprising many sentences. They may
take up more than one horizontal row of text on a person’s screen. A line, then, in
this context, is alogical unit of text. Typical usage is to type in one entire paragraph
of text per line in the editor, and use blank lines to separate paragraphs. Most people
use some sort of client software that formats text to the width of their screen or
window as needed, and the one paragraph per line method makes it easiest for most
people' s clients to present text in a coherent way.

66 Mail System and Editors

mailto:@unsend=<message
mailto:-@unsend

I’ll begin by talking about how to begin an editing session, and how to end one,
i.e. how to get out of the editor once you' re there. Then | will describe some different
ways to enter text, ways to view the text you’'ve entered so far, and ways to modify
the text you’ ve entered.

Invoking the Editor

When you start up one of the editors, you are moved to one of the special
editing rooms, and we call that invoking that editor. Thus, one would invoke the note
editor, the mail editor, or the verb editor. The in-MOO editors require you to specify
what you’'re editing before you can begin. (This differs from most commercial editor
or word processing programs which provide the option of opening a new file, then
specifying where the text will go, for example with a “Save As’ command.) So you
begin editing by indicating the thing you want to edit. Here are some examples:

@end Wer ebul | Invoke the mail editor, working on
amessage to the player Werebull.

@end *chatter Invoke the mail editor, working on
amessagetothelist *chatter.

@end Werebull *chatter Invoke the mail editor, working a
message for both Werebull and
*chatter.

@notedit me.description Invoke the note editor, working on
your own . descri ption
property.

@dit me.description Invoke the note editor, working on

your own . descri pti on property
(same result as @ot edi t
ne. descri pti on).

@otedit here.exterior_description | Invoke the note editor, working on
the. exterior_description

@dit here.exterior_description property of the room that you are
in. Note that you have to own an

object in order to edit properties

onit.
@wotedit test note Invoke the note editor, working on
the text of an object named “t est
@dit test note not e”.
@otedit #1234 Invoke the note editor, working on
the description of object #1234
@dit #1234 (which you must own).

Mail System and Editors 67

@dit rock:drop Invoke the verb editor, working on
the verb : dr op on an object
named “r ock”.

@dit #1234:drop Invoke the verb editor, working on
the verb : dr op on object #1234

Notice that the same command, @di t , can invoke either the note editor or the
verb editor, depending on whether you use a period (.) to specify a property, or a
colon (i), which indicates a verb. Furthermore, if you @wotedit or @dit a
descendent of either the generic note or the generic letter, you will be editing that

note or letter's text, but if you @otedit or @dit any other object (without
specifying a property or verb), then you will edit that object’ s description.

@dit #1234
will invoke the note editor to edit the description of object #1234.

L eaving an Editor

There are three ways that you can leave an editor after you have finished
entering and editing text.

Oneisto exit and discard all text you may have entered or modified during that
editing session. The command isthe samein all three editors. Type the command:

abort

The second is to save your changes or send your message and then exit, and this

is different in each of the editors. In the note editor, type save, and then done. In
the mail editor, type send. In the verb editor, type conpi | e and then done.
The third way is to leave your work in progress. In any of the editors, you can
géPe done (without saving, sending, or compilin]ql). Or you can teleport from the
itor (remember, an editor is a room) to any other location. Or you can log off.
Your work is saved on the equivalent of a scratch pad, and when you return to the
editor, you can either resume that work, or abort out of it. To return, you can type
@dit by itself (for the note editor or the verb editor) or @end by itself (for the mail
editor). If you try to edit something other than what you were working on, the
system will ask you if you want to resume the original editing session or abort it,
before letting you edit the new note verb, or MOOmail.

Listing Text, Finding and Moving the I nsertion Point

When you enter new lines of text, they are added after the current line. So the
first order of business might be to determine which line is current and perhaps move
to another line. The place where new text will be added is called the insertion point.

68 Mail System and Editors

The easiest way to see where the insertion point is, and get your bearings in the
text, isto type:

list

This will show you the current insertion point, plus some of the context, i.e. a
few of the lines above and afew below. Here' s one example:

1: Fee,
2: Fie,
3 Fum

NNNN

In this case, the insertion point is after line 3, and if | begin entering text, it will
go in at the bottom of the document. If the insertion point were between lines 2 and
3, thenli st would show:

1. Fee,
_2_Fie,
ANZN Fum

The combination of underscores and up-arrows is intended to depict a spot
between two lines, where new text will go, if and when you start entering it.

There are afew ways to move the insertion point. Perhaps the easiest is with the
i nsert command, which can be abbreviated i ns. Counter to what you might think,
the i nsert command doesn't insert text. It gets you ready to insert text by
specifying where you want to insert it. Used alone, the i nsert command will show

you the insertion point with just the line above and the line below. If you specify a
number, though, that moves the insertion point before that line:

ins 1 Get ready to insert text before line 1, i.e. at the very beginning of
the document.

ins _1 Getready toinsert text after line 1, i.e. between lines 1 and 2.

ins 3 Get ready to insert text beforeline 3, i.e. between lines 2 and 3.

ins $ Get ready to insert text at the end of the document, i.e. after the
last line.

Entering Text

There are four ways to input new text into your document, mail message, or
verb. These are: say, enot e, ent er, and yank.

When you say something in an editor, the text you say is added as a new line at
the insertion point. So if, in our example, the insertion point were between lines 2
and 3, and you typed:

"Foo,

and then you typed | i st , you would see:

1: Fee,
2: Fie,

Mail System and Editors 69

3 Foo,
ANAN Fuml

(Notice that the double-quote character (") didn’'t get added, because it is just
the abbreviation for the say command.)

When you emote something in an editor, it appends that text to the end of the
line that is before the insertion point. Suppose you wanted to append some text to

line 4. First you would position the insertion point after line 4 by typing either i ns
_4orins $. Thenyou might type:

| smell the blood of an Englishman!

and then if you typed | i st , you would see:

1: Fee,
2. Fie,
3: Foo,
4 Fum | snell the blood of an Englishman!

AAAN

Another way to enter text is with the ent er command. This entails typing the
word ent er on aline by itself. The system prompts you to enter lines of text. You
terminate this text entry by typing a period (.) on a line by itself, or else the
command @bort. The first kegps (and inserts) the lines of text, the second throws
them away. Suppose you wanted to add some text to the beginning of the

document. First, position the insertion point so thet it is at the beginning: i ns 1.
Then type (exactly):

ent er
The gi ant | ooked around...

Then the giant sniffed the air...
Then the giant began to roar:

Now if you typel i st, you will see:

1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3_ Then the giant began to roar:

ANAN Fee,
5: Fie,
6: Foo,
7: Fum | smell the blood of an Englishman!

Y ou can also compose text in a word processing window on your own computer

and paste it from the clipboard after you type the word ent er and before you type
the period on aline by itself.

The last way to enter text is with the yank command. It's used to bring in the
text of a note object in its entirety. So if you had the entire story of Jack and the
Beanstalk in a note object, and wanted to pull it into a mail message, for example,

70 Mail System and Editors

you would start the mail editor with the @end <per son> command, then (after
typing the subject line, if prompted to do so) you would type:

yank from <not e>
The entire text from the specified note would be entered as if you had typed it.
Y ou could then edit it further, or save or send it asit was.

In addition to listing text, you can display it without the numbers, by typing the
command:

print

M odifying Text

Once you have some text and looked it over, you might want to make some
modifications. For this we have the subst command, which can be abbreviated as s.
If you type | ook while in any of the editors, you'll see a short synopsis of commands
with their syntaxes. The onefor subst looks like this:

s*ubst /<strl>/<str2>[/[g][c][<range>]]

The heart of the subst command is to substitute one string for another. The
simplest version is to make the substitution in the current line. Let'slist out our text,

again:

1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3 Then the giant began to roar:
AN Fee,
5: Fie,
6: Foo,
7: Fuml | snell the blood of an Englishman!

The insertion point is after line 3, which makes line 3 the current line for
substitution. Let's change “roar” to “bellow”:

subst /roar/bel | ow
The editor will print out the modified line:
3 _Then the giant began to bell ow
Now let’s change that “Foo” to “Fo” in line 6:
subst /Foo/ Fo/ 6
The editor will again print out the modified line:
6: Fo,

Let’s change the giant into an ogre, through the whole range of lines. Remember
that the way to designate “ after the last line” iswith the “$” sign:
subst /giant/ogre/1-$

We will see:

Mail System and Editors 71

1: The ogre | ooked around. ..
2: Then the ogre sniffed the air...
3 Then the ogre began to bel |l ow

By now you might want to take a look at the full text again, to see what we've
got:

print
You will see:

The ogre | ooked around...

Then the ogre sniffed the air. ..

Then the ogre began to bell ow

Fee,

Fi e,

Fo,

Fum | smell the bl ood of an Engli shnan!

For fun, let's change al instances of the letter “f” to the letter “r”. This
incorporates everything at once:

subst /f/r/gc 1-$

The “g” (think “global”) in the command means every letter “f” on a line, not
just the first, so we get “snirred” rather than “snirfed”. The “c” means ignore
capitalization. So we get:

The ogre | ooked around...

Then the ogre snirred the air...

Then the ogre began to bell ow

ree,

rie,

ro,

rum | snell the blood or an Engli shman!

At this point, we' ve pretty well mangled our example. How to restore it? More
substitutions. Or type abort and start over.
Before we leave substitutions, let’s consider what to do if you wanted to use the

slash character (/) itself as part of a substitution: Y ou can use any separator at all that
doesn’'t appear in either the string you wish to replace or the new string. So to
change “and or” to “and/or” you could type any of:

subst | and or|and/or|
subst , and or, and/ or,
subst xand or xand/ or x

The subst command is used so much that it finds its way into casual
conversation. Y ou might see something like this:

72 Mail System and Editors

Gstrich says, "I will now sing the national anthem while
standi ng on ny head and drinking root beer through a straw "
Gstrich says, "subst /now not/"

Ostrich isindicating that he made a typographical error and intended to say that

he will not sing the national anthem while standing on his head and drinking root
beer through a straw.

Re-arranging Text

Let’s go back to an earlier version of our text:

1: The gi ant | ooked around...

2: Then the giant sniffed the air...

3: Then the giant began to roar:

4: Fee,

5: Fie,

6: Foo,

7_ Fum | snell the blood of an Englishman!
N

AAAN

The nove command moves a line of text, or a range of lines, to a new point. If

we wanted to change the sequence of our giant’s utterances, for instance, we could do
this:

nove 6 to 5

and get this:
1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4: Fee,
5: Foo,
6: Fie,
7 _ Fum | snell the blood of an Engli shman!
NNNN

We could do this:
move 5-6 to 4

and get this:
1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4: Foo,
5: Fie,
6: Fee,

Mail System and Editors 73

7 _ Fum | snell the blood of an Engli shman!
NANNNN

The copy command copies aline or range of linesin like manner:

copy 4 to 4
would yield:
1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4: Foo,
5: Foo,
6: Fie,
7: Fee,
~ 8 Fum | snell the blood of an Engli shnman!
NANNNN
Thej oi n command joins lines together. For example:
join 4-8
gives:
1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4 Foo, Foo, Fie, Fee, Fum | smell the blood of an
Engl i shman!
NNNN
The fill command combines joining and splitting lines so that they are less
than or equal to a specified number of characters (columns) in length. For example:
fill 4 @5
gives:
1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4: Foo, Foo, Fie, Fee, Fum
5: 1 smell the blood of an
__6_ Englishman!
NNNN

Deleting lines

Y ou can delete a line or range of lines with the del et e command, which can be
abbreviated as del . When you do this, the editor prints out the deleted text and the

74 Mail System and Editors

mailto:@25

insertion point is automatically moved to the point where the lines were deleted, so if
you then start entering text, it will directly replace the linesyou just deleted. Here'sa
quick example:

del 4
Foo, Foo, Fie, Fee, Fum

"Fee, Fie, Fo, Fum
Li ne 4 added.

list

1: The gi ant | ooked around...
2: Then the giant sniffed the air...
3: Then the giant began to roar:
4 Fee, Fie, Fo, Fum
ANBA | smel | the bl ood
6: of an Engli shman!

A Few Miscellaneous Commands

If you somehow forget what you are editing, you can use the what command. |
edited an actual note on LambdaM OO as | wrote this segment. Here' swhat | see:

what

You are editing "test note"(#92413).
Your insertion point is before line 5.
There are changes.

Sometimes you want to verify aline number before doing a substitution, and for
thiswe have thef i nd command. By itself, it will find the next instance (i.e. after the
current insertion point, wherever that is) of the string you specify. Or you can
specify a starting point. You can also ignore capitalization. The fi nd command
moves the insertion point, so you can use the command sequentially until you find
the particular instance of aword or string of characters that you’'re looking for. Here
are some examples:

find /f Find the next line with an “f” init.
find /f Find the next-next line with an “f” init.
find /f/1 Find the first “f” in or after line 1.

find /f/cl Find thefirst “F” or “f” in or after line 1.
find /fol/cl Find thefirst instance of “fo” or “FO” or “Fo” or “fO” in or
after line 1.

The nbde command is probably of interest only to programmers. If you are not
a programmer and don’'t understand this part, don’t worry; you may ignore it in
complete safety. If your text has several linesin it, it will be stored, when you save it,
as alist of strings. If your text has only one line of text in it, then it can either be
stored as a single text string or as alist with one element (a string) in it.

Mail System and Editors 75

node Find out what mode you’ re currently in.
node string Switch to string mode.
node |i st Switch to list mode.

The publ i sh and vi ew commands work together. Normally, no one can see
your text as you edit it. But suppose you were struggling with something in the verb

editor, and | wanted to help you but couldn’'t quite get a handle on the situation
based on paging each other back and forth. First | would go to a “blank” editing
session by typing @o $verb_editor (remember, it's aroom). Then | would page
you to type the publ i sh command. Then | could type vi ew <your nane> and the
system would list out what was in your editing session. | might then page you with
something like, “ Try adding a semicolon to the end of line 3.”

In the mail editor, you can change the recipient of your post with the to
command. Suppose you had typed @eply cur on *chatt er, and because of your
mail-option settings, your post was addressed to the author when what you really
wanted to do was reply on the *list itself. You'd spot this (one hopes) when printing
your message before sending it. You could change the recipient by typing to
*chatter,orto <list of recipients>.

Edit Options

Just as there are mail-options you can set, there are also edit-options you can set.
Type @dit-options to see what they are. Probably the most significant one is

| ocal . If you type @dit - ogti on +l ocal , then whenever you @dit anything,
the text you wish to edit will be uploaded to your client program, and when you are

finished, you can download the text again. Each client is different, as are the
commands to edit in those clients, and not all clients support this feature. To change

back to using the in-M OO editors, type @di t - opti on -l ocal .

76 Mail System and Editors

Summary

If you forget the collection of commands available to you, you can type | ook
while in any of the editors and see areminder list of them. There is detailed help text

for each individual command as well.

| ook

Not e Editor

Conmands

say <t ext > y*ank from <t ext-source>

enot e <t ext> wr hat

lis*t [<range>] [nonuni node [string|list]

ins*ert [<ins>] ["<text>] e*dit <not e>

n*ext, p*rev [n] ["<text>] save [<not e>]

enter abort

del *ete [<range>] g*ui t, done, pause

f*ind /<str>[/[c][<range>]]

s*ubst [<strl1>/<str2>[/[g][c][<range>]]

nfove, c*opy [<range>] to <ins>

join*l [<range>]

fill [<range>] [@col >]

---- Do “help <cnmdnanme>' for help with a given command. ----

<ins>::=$ (the end) | [~]n (above line n) | _n (belowline n) | (current)
<range> ::=<lin>| <lin><lin>| from<lin>]| to<lin>| from<lin>to <lin>
<lin>::=n] [n]$ (n fromthe end) | [n]_ (n before .) | [n]” (n after .)

“help insert’ and ‘help ranges' describe these in detail

Mail System and Editors 77

mailto:@<col>

Chapter 5 — Extending the Virtual Reality: Building

Overview

This section details the various ways to create rooms and other objects. It
amplifies what you already leaned about @i g. On nearly all MOOs, players start out
as members of the “generic builder” player class, which means that the building
commands are available to them.

Between the basics of communication, moving around, and interacting with
various objects on the one hand, and the intricacies of programming on the other, is
building. Building is the business of creating new objects on a MOO and modifying
them in certain limited ways. When you create an object, you first specify what kind
of object it is to be (a room or a container or a note, for example), and the object’s
name, with optional aliases. Then, typically, you describe your object, maybe set
some of its messages (see page 46), and the object is then ready to use. Some fancier
kinds of objects let you specify some additional information which might also govern
how the object behaves. An example of this might be where an object should go if it
needs to be “sent home”.

@cr eate

@reate <generic> naned "<nane>"
or:

@reat e <generic> naned
"<panme>", "<aliasl>","<alias2>",.,"<last alias>"

@reate and @li g are the two quintessential commands of building. Each
creates a new object where there was none before.

There are a couple of ways to specify the kind of thing (i.e. the parent or generic)
you want to create. As aways, you can specify the object by its object number, if you
know it. If the generic you want to create a copy of is in your vicinity (i.e. you are
either holding it or in the same room with it), then you can specify it by name. A
few objects are used so commonly that we can refer to them even if they are not
nearby, using the “$’ sign. The generic thing is called $thing. The generic
container is called $cont ai ner. The generic note is called $not e. In this way, you
can create things and containers and notes without having to know the generics
object numbers or have them in your vicinity. Let’'slook at an example of creating a
very simple object, a paper weight:

@reate $thing naned "paper weight","paperwei ght", " pw'
The system will print out something like:

79

mailto:@dig

You now have paper wei ght (aka paperweight and pw) with
obj ect nunber #63555 and parent generic thing (#5).

The actual number of your paper weight will be different. Do you have to
remember this number? Yes and no. As long as the paper weight is either in the
same room that you are in or is in your inventory (i.e. you are holding it), then you
can refer to it by name. And when you first create something, you are holding it.
That’s one reason why we use @li g (described further on) instead of @r eat e for
rooms and connecting exits: so that you won’t be holding these things when they are
created. There' s nothing actually wrong with holding rooms or exits, but it doesn’t
make sense and serves no practical purpose.

@describe

The next logical thing to do is to describe your paper weight:

@lescri be pw as "An ovoid paper wei ght made of onyx. Though
perfectly snooth, it has the curious property that it gives
no reflection, alnmost as if it were an oddl y-shaped bl ack
hole. It does have the expected flat spot on the bottom"

There isn’t much you can do with a $thing. You can hand it to someone. You
candropit. You cantakeit. That'sabout it. To be sure, type:

exam ne paper wei ght

Wheat you can do is change the text that you and/or others see when you hand it
to someone or drop it or take it. (Note that you don’t have to be a builder to set
messages on objects you own; | review it here because it’s the logical next thing to do
when crafting an object.) Thisis done through messages, and changing the messages
on an object is a quick and easy way to give it a bit of character. First, you might
want to list the existing messages:

@messages

@ressages paper wei ght
The system will respond with the following list:

@lrop_failed paper weight is "You can't seemto drop %
here. "

@Ir op_succeeded paper weight is "You drop % ."
@drop_failed paper weight is "tries to drop % but fails!"
@dr op_succeeded paper weight is "drops % ."

@t ake_succeeded paper weight is "picks up %."

@t ake _failed paper weight isn't set.

@ ake_succeeded paper weight is "You take % ."

@ ake_failed paper weight is "You can't pick that up."

80 Building

Because your object is a child of $t hi ng, it has inherited all its properties,
including all the messages that $t hi ng has.

The purpose of most of these messages should be pretty clear from the
combination of their names and content. By convention, messages beginning with
“0” are told to others, while messages not beginning with “0” are told to the player
initiating the relevant action. The % (think “this’) in each message substitutes the
actual name of the object. In general, most generics have their messages set so that
they make sense without any customization, but let's change a few of these to
demonstrate the method. The syntax for setting messages is the same as the way the
messages are printed out above. Here are a couple of examples:

@Irop_succeeded pwis "You drop %. It lands with a thud,
then rolls a short distance before coming to a stop.”

@drop_succeeded pwis "drops %. It lands with a thud,
then rolls a short distance before conming to a stop."

@recycle

Should you decide that you no longer want this object, you can get rid of it by
typing:
@ ecycl e paper wei ght
and the system will respond with aline like:
paper wei ght (#63555) recycl ed.

You can only recycle objects that you own. If the object you wish to recycle is
not in your vicinity, then you can recycle it by object number instead of by name.
It’s good to recycle objects that you don’t use, as this conserves system resources.

Generic Objects

$things are useful as stage props. If you want to be seen carrying a feather
duster, for example, but don't need to do any actual dusting, @reate $thing
naned "feather duster” will probably suit your purposes adequately. Other
generics, however, are capable of doing more. A good example of thisis the generic
container, abbreviated $cont ai ner. To make one, type (for example):
@reate $contai ner nanmed "l eather pouch", "pouch", "I p"

@lescribe | p as "A sinple-looking | eather pouch, of
remar kabl e capacity."

You can type exani ne pouch to see what actions you can actually do with it,
and @essages pouch to seeif you want to change any of the associated messages.
Then if you want to you can put your paper weight in the pouch.

Building 81

Normally, one would (and should) investigate a generic before making an
instance of it. People tend to practice varying levels of due diligence in this regard,
but the appropriate steps (the sequenceisn’t all that important) are as follows:

exam ne <generic>
hel p <generic>
@arents <generic>

Then repeat the above for each listed parent until you come to an object you
already know about.

Generics can be extremely complex. By using @r eat e to make an instance
(think “clone™) of an existing generic, you get all its functionality without having to
do any programming. Building things based on existing generics also takes up less
space in the database than programming a new object from scratch, which is
desirable, too.

So then the question arises, “How does one know what generics there are to

make kids of 7”7 Some of the basics are $t hi ng, $cont ai ner (you can open it, close
it, put things into it and take things from it), $not e (you can edit its text and others
canread it), $l etter (likea $not e, but a designated recipient can burn it when e has
finished reading) and $nai |l _reci pi ent (a MOO mailing list). These generics are
part of the LambdaCore, and are included in every database based on it. Players who
are programmers can create additional generics. These usually can’t be referenced by

aname beginning with a“$”; they have to be referenced by object number.

@parents

One way to learn about existing generics is to explore the MOO, examining
many objects, and when you find one that interests you, type:

@ar ents <obj ect >

This command shows an object’ s ancestry, and after the exam ne command it is
one of the most basic tools at your disposal to investigate an existing object.
Suppose, for example, you took an interest in a hot air balloon that you came across
in your explorations. Y ou could type:

@arents Royal Blue Balloon

Royal Bl ue Bal | oon(#68806) Generic Hot Air Ball oon(#66549)
Ceneric Aircraft (#42055) Ceneric Magnetic Portable Secure
Seated Integrated Detail Roon(#58237) Ceneric Portable
Secure Seated Integrated Detail Roomwi th Sensible

Locki ng(#17524) Ceneric Portabl e Secure Seated |ntegrated
Det ai | Room(#36643) Ceneric Secure Seated Integrating

Det ai | ed Roonm(#9805) Area/ Seat - Consci ous Roonm(#5531)

Generic Secure Integrating Detail ed Room (w thout

seat s) (#156) Integrating Detail Roomw th Features(#21311)
Integrating Detail Roomw th Exit-Verb Mt chi ng(#8801)

82 Building

Integrating Detail Room Mark |11 (#17755) Modi fi ed Det ai |
Roon(#11825) Frand's generic detailed roon#6464) Sel f -
C eani ng Roon(#27777) generic room #3) Root C ass(#1)

Whew, that’'s a lot! (You'll find that some objects have very long pedigrees.)
You could then read the help text for the generic hot air balloon by typing hel p

#66549 and make an informed decision as to whether you actually wanted to create
one for yourself. Or you might decide that instead of a hot air balloon, a flying

carpet is more to your taste, in which case the generic aircraft might be a better
choice.

LambdaM OO also has a museum, as do some other MOOs. Thisis aroom or set
of rooms whose purpose is to provide information about various generic objects that
are available, and it is a valuable resource.

Not every item is available as a generic; sometimes a programmer might make an
object but want to limit it to being one-of-a-kind. Before people can make their own
copies of an object the programmer of that object must make it fertile. (The

command is @hnod <object> +f, but that's properly in a section about
programming rather than building. It’sincluded here for completeness.) If an object
is not fertile, you can’'t make a copy of it, even if it has the word “generic” in its
name. You are out of luck unless you can persuade the owner to make it fertile.

@kids

~ This command is the opposite of @ar ents. You useit to list the children of a
given object. Note that it does not list kids of kids. Different MOOs have different

commands to list all descendents with one single command, but you can always use
@i ds sequentially to explore various branches of the object hierarchy.

@audit

It is a common predicament to create an object (or a room, see @i g, below),
then misplace it and not be able to find it or use it because you’ ve forgotten its object

number. For thiswe have the @udi t command. There are two forms:
@udi t
@udit <pl ayer>
The first audits yourself. It prints out alist of all the objects that you own, along
with their object numbers and sizes. The second form prints the same information,
except that it lists another player’s objects instead of your own. Other players can
@udit you and see a list of things that you own. Suppose | mislaid my paper
weight, and typed @udi t to findit. I might see something like this:
Obj ects owned by Yib (from#0 to #118569):

54K #58337 Yib [Yib's Study]
4K #23920 Yib's Study

Building 83

<1lK #57744 a wal nut desk [Yib's Study]
2K #71354 white dendrobiumorchids [Yib's Study]

3K #32504 a linen handkerchi ef [Yib]

<1K #35487 west Yib's Study->*Library Turret
3K #107539 east *Library Turret->Yib's Study
1K #71176 a few lucky Bits [Yib]
1K #4612 bright sparkly thing [a wal nut desk]
3K #101204 a | ady's pocket watch *[Boo]

<1K #63555 paper weight *[Under the Couch Cushions]

-- 11 objects. Total bytes: 74,927.--------mmmmmmm -

The numbers in the first column are the sizes of the objects in kilobytes of quota.
The second column is the object number and name of each thing | own, including
myself. The third column tells the name of each object’s location (in square
brackets); an asterisk(*) indicates that 1 don’'t own the indicated location. If the
object is an exit, then the third column shows the names of the two rooms each exit
connects together, instead. Here you can see that my paper weight has somehow
found its way to a place called “Under the Couch Cushions’. | can retrieve it easily
by typing:

@move #63555 to ne

@dig (rooms)

As mentioned previously, when you @r eat e something, its initial . | ocati on
is you — that is to say, you will be holding it right after creating it. In the case of a
room, this is awkward, because holding a room doesn’'t make sense (unless perhaps
it’s a portable room) and also, you can’t teleport into or otherwise enter aroom if you
are holding it, because it would violate the containment hierarchy. (A can’t be located
inside B if B is located inside A). So, for rooms, we use the @i g command instead.

We also use @i g to create the exits which connect two rooms, because it
conveniently automates the administrative work of setting the exit’'s source and

destination. Here are some examples of each form:
@li g Hone Sweet Hone

The system will respond with, Hone Sweet Home (#113415) created, thus
informing me of the object number of my new room. (Note that the object number
of your room will be different.) Now | can teleport there, and describe it. If | ever

forget its number, | can always @udi t myself to find out again.

The location of this new room is #-1 <$nothing>. You can think of it
floating free in the ether. Until you connect it to another room with exits (see
below), you can only get there by teleporting. There is nothing wrong with this, by
the way — many rooms are unconnected, and that’ s just fine.

84 Building

@dig (exits)

An exit isaspecial kind of object that connects one room to another. It’s special
in that it isn't located in either of the rooms it connects, but can be referenced by
name in the room that is its .source. The other room is the exit's . dest (think
“destination”). To have a two-way connection between a pair of rooms, you have to
have two exit objects, one for each direction.

Digging an exit starts in the source room. Y ou can dig exits one at atime, or two

at atime (one for each direction), you can specify aliases at the time you @li g or add
them later, and you can dig to an existing room or create a new room
simultaneously. Here are some examples:

@lig "east" to #115
would dig an exit named “east” to the room with the object number #115.

@lig "east","e","out" to #115
would dig an exit with the aliases “east”, “€’, and “out” to the room with object
number #115.

@ig "east","e","out"|"west","wW',"in" to #115
would dig two exits in opposite directions, connecting room #115 to the room you

were in when you typed the @i g command. The vertical bar (|) character separates
the aliases of the exit going to the room from the aliases of the exits |leading back from
the room.

@lig "east","e","out" to The Back Porch

would create a new room named “ The Back Porch”, and simultaneously create an
exit, east , from the room where you were to the new room.

@lig "east","e","out"|"west","wW","in" to The Back Porch
would create a new room named “The Back Porch” and exits in both directions

connecting the porch to the room you were in when you typed the @i g command.
The system will print a line informing you of the object numbers of the new

exits (and, if applicable, the new room) that you' ve created with the @i g command.
As always, you can also get the object numbers of these newly-created objects using

the @udi t command.

To make your building richer, it's good to describe your exits and set their
messages. This is addressed in the section on room integration and exit messages,
starting on page 94.

Exit objects must designate the rooms they lead from and to; this is normally

done automatically as a side effect of the @i g command if you own both rooms. If
you don’t own the room the exit leads from, the owner of the source room should

use the following command to attach it:
@dd-exit <exit-object>

Building 85

And if you don’'t own the room that is the exit object’ s destination, then the owner of
the destination room must use the following command to compl ete the connection:

@dd- entrance <exit-object>

Exit attachment matters more for the source room, since without the
attachment, nobody can use the exit. If the exit leads to a room that has been set not

to allow teleportation viathe . free_entry property, the exit can’t work unless it’s
attached. The principle, here, is that if a room permits a person to teleport in, then
the message generated by an exit is no worse than a teleport message. On the other
hand, if the owner of the room won't let you teleport in, then you can’t dig your own

exit to the place, either. Or rather you can @li g the exit, but you can’t use it unless
the destination’ s owner “blesses it” with the @dd- ent r ance command.

@chparent

The @hparent command is typically used to change the parent of an object
from its current parent to another generic, usually (though not necessarily) an object

of a similar type. One might @hpar ent a room, for example, to a fancier -- or
merely different -- room generic. Likewise one might change the parent of an exit to

a transparent exit, or a generic gate, and one might @hpar ent oneself to a different
player class. For example:

@hparent ne to #191
or:
@hparent here to #9805

@r ecr eate

The @ecreate command is basicaly a combination of @reate and

@hparent. When you use @hpar ent , any properties and messages that you’ ve set
that are in common with the new parent keep the values you’ ve set them to. If you

really want to start over from scratch, but keep the same object number, then
@ ecr eat e isthe command to use. The syntax is:

@ ecreate <object> as <parent> naned <new nane>

@set
Some objects permit some customization by letting you set the value of one or

more properties which in turn affect the object’s behavior. You can, for example,
modify the way a room’s contents are displayed by setting its . ct ype property to

86 Building

different values. To the best of my knowledge, there isn’t any documentation about
the various possible values of . ct ype, so | present arather long illustration here.

@et <roonp.ctype to O

will list out the room’s contents, one item per line, in the order in which the items
entered the room:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wde
steps |l ead west and down to the front |awn.
Cont ent s:

Yi bCo Muffl e-Matic Soundproof Energy Field

Rocki ng Chair

a smal|l w cker basket

a white-washed wooden porch sw ng

Yi b

@et <roonp.cytpe to 1
will put al non-player objects into separate sentences of the form, “You see <item>
here,” on separate lines, and all players into separate sentences of the form “<So-and-

so> is here,” on separate lines. The order will be the order in which items and players
entered the room:

The Front Veranda

A gloriously spaci ous covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wde
steps |l ead west and down to the front |awn.

You see YibCo Muffle-Matic Soundproof Energy Field here.
You see Rocking Chair here.

You see a small wi cker basket here.

You see a white-washed wooden porch swi ng here.

Yib is here.

@et <roonp.ctype to 2
will list al the contents in a single sentence:

The Front Veranda

A gloriously spacious covered veranda, painted all in white.
To the east, a large door leads into the mansion. Wde
steps | ead west and down to the front |awn.

You see YibCo Muffle-Matic Soundproof Energy Field, Rocking
Chair, a small w cker basket, a white-washed wooden porch
swing, and Yib here.

@et <roonp.ctype to 3
will list items in one sentence, and players separately, in another:

The Front Veranda
A gloriously spacious covered veranda, painted all in white.

Building 87

To the east, a large door leads into the mansion. Wde
steps | ead west and down to the front |awn.

You see Yi bCo Muffle-Matic Soundproof Energy Field, Rocking
Chair, a snmall wi cker basket, and a white-washed wooden
porch swi ng here.

Yib is here.

If you set aroom’s . ct ype to anything else, the contents won't display at all,
unless you have changed its parent to a room generic that supports additional

.ctypes. (ldeally, the room’'s help text will mention this. To read a room’s help

text, type hel p her e whileintheroom or hel p <room obj ect nunber > if you are
not in the room.)

Using @set with M essages

A message is a property on an object that endswith “_msg”. These properties are
special in that they can be set as described in the larger section on messages (see page
46), and that is the way it is usually done. But message properties can also be set

and/or changed using the @ et command, just like any other property of an object.
If you had a paper weight with the alias “pw”, then the following two commands
would have an identical result:

@lr op_succeeded pwis "You drop %. It lands with a thud,
then rolls a short distance before conming to a stop."

@et pw. drop_succeeded_nsg to "You drop %. It lands with a
thud, then rolls a short distance before coning to a stop."

@contents

One advantage of being_ a $bui | der is that you don’t have to depend on a
room’ s description (or any object’ s description) to find out what its contents are. Y ou

can type:
@ontents <object >

and get a list of its contents by name and number. Like all of the commands
presented in this segment, it is a meta-VR command, which crosses the boundary of a
MOQ's theme into its underlying structure. The trade-off is some of the VR charm
for increased informational accuracy.

@lock

As abuilder, you can control some of the ways your objects are used. The easiest
way is with the @ ock command. @ ock works differently with different kinds of

88 Building

mailto:@set

objects, and that can make it seem a bit tricky, but it’s easy once you get the hang of
it. Briefly, if you lock aroom, that governs what can and cannot enter it. If you lock
a thing or a container, that governs locations to which it can and cannot be moved.
And if you lock an exit, that governs who (or what) can and cannot pass through it.
The syntax of the command is:

@ock <object> with <key>

To use @ ock effectively, you need to understand the concept of akey. A key is
a string of text that represents objects and ways that they can be combined. Brietly,

“&&" means “and”, “| | 7 means “or”, and “! ” means “not”. These can be combined
in various ways. For example, if my object number is #97, and Ostrich’s object
number is #891, then “#97 && #891” means “Yib and Ostrich”, “#97 || #891"

means “Yib or Ostrich”, and “! #97” means “not Yib”. Y ou can combine any number
of objects in any number of ways. Use parentheses to clarify complicated

expressions. (Seealso hel p | ocki ng andhel p keys online.)
Thereverse of locking an itemiis:

@l ock <itenp
Containers offer the additional option of:
@ ock-for-open <container> with <key>
and:
@inl ock-f or-open <cont ai ner >

This governs who can open a container, as opposed to who may take a container
or where a container may be dropped.

@build-options

There is an interface called an options package that lets you customize the way
some of the building commands work. To list your current option settings type:

@ui | d- opti ons

Most MOOs support four builder options; this section explains how to set and
clear each of them, and what each of them means.

@ui | d-option dig_room=<room generic>
When you @li g a room, you are creating a child of a particular room. In most
cases, thisis $r oom which is the generic room provided by the MOO. After digging a

room, you may wish to use the @hpar ent command to select a different room-
generic as the room’s parent. If you have a favorite room generic and want all the

rooms you dig to have that generic as a parent, you can specify that with this option.
To clear this option and make it so that all rooms that you subsequently @li g use the
system default, type @ui | d-option -di g room

@ui | d-option dig_exit=<exit-generic>

Building 89

As with rooms, when you @li g an exit, its parent is set to a particular generic
exit, usually $exi t . If you wish to specify a different generic exit as your default, you
can usethedi g_exit builder option to specify a generic, and all exits you @li g after
that will be kids of the generic you specified. To clear this option and make it so that
all exits you subsequently @i g use the system default, type: @uil d-option -
dig_exit

@ui | d-option create flags=<flags>

This option governs the permission settings that will be associated with every
object you create. An object can be readable by others or not, writable by others or
not, and fertile or not. Readable means that others can list the properties on your
object. Writable means that others may add or remove properties and/or verbs from
your object. CAUTION! It isamost never a good ideato set an object to be writable.
Better to use available facilities or get a wizard to change ownership of an object to a
different person if you want to let someone else assist you with your building. Fertile
means that other people may make kids of your object. The value for <fl ags> in
this builder option can be any substring of "rwf ", or it can be the empty string" ").

@ui |l d-option -bi_create
@ui | d-option +bi_create
When you create a new object, the system will either re-use a previously-recycled
object, or it will create a new object with a higher object number than all previously-
created objects. It is better for the database if you use recycled objects, which is the
“-bi _create” option.

@quota

Quota is the term we use to measure the amount of space that objectstake up in
the computer’s memory. Building things takes up space in the database, and players
are usually granted a fixed amount of quota to start with. In LambdaMOO’s early
days, players were allotted a fixed number of objects that they could create. An
unforeseen consequence of this was that people programmed fancier and fancier
objects which took up more and more space, culminating in the generic multi-room,
which was a room that simulated many rooms but which was, in fact, still a single
object. LambdaM OO then converted to what is called “byte-based quota’. A player
may create as many objects as e wishes, except that the total size of all the objects
may not exceed a specified limit. (If it does, then the player can’t create new objects
or add properties to existing objects.) The command:

@uot a

will display how much quota you have used up with the objects you have created,
and how much you still have available for creating new objects. Y ou can also type:

@uot a <pl ayer >
to see how much quota someone €l se has available, and how much e has used up.

90 Building

Different MOOs will have different policies regarding whether they use object-
based quota or byte-based quota, how much quota players are allotted when they first
register, and how to get more quota LambdaMOO has an elected Architecture
Review Board (ARB) which reviews quota requests against certain criteria; in addition,
LambdaM OO players can transfer quota directly to one another. On other MOOs,
wizards will set quota policy.

Trimming Down Your (Quota) Size
@measure

The amount of quota an object takes up can change. Consider a note that has
only a few lines of text in it. Then its owner edits it to be an extremely long note.
Now it takes up more quota. The system has a single object-measurement task, and
individual objects are generally measured only once every few days. Thus, the
information provided by @uota may not be up-to-date. This shouldn’t matter
unless you are over quota and are trying to “slim down”, as we say, perhaps in order
to be able to create another object. In addition, you are only permitted to have a
certain maximum number of unmeasured objects at a time (ten, on LambdaM OO),
and after that you may not create more objects until the new objects have been
measured. The @reasure command, in its several variations, is provided so that
players don’t have to wait for the automatic measurement task to run if they need or
want to have an object measured sooner than that. The tradeoff is that measuring
things takes up computational resources, contributing to lag, and players are asked to
use this command sparingly.

@reasur e object <object>
This command is used to measure a single object at atime, in lieu of waiting for
the background measurement task to get to it.

The first step for trimming down is to use the @ mm command to remove any
MOOmail messages that you don't need to keep. (You can use the @et f orward
command to forward messages to your registration email address before removing
them, too.) These removed messages are not entirely gone, yet. The next step is to
expunge the removed messages. You can do that in either of the following ways:
@enunber ne renumbers all your MOOmail messages and expunges deleted
messages. @nrmm expunge on nme expunges removed messages without

renumbering them. Last, type @reasure object ne and @easure summary, to
measure and record your new (smaller) size.

@reasur e sunmary
@reasure summary <pl ayer>
The @uot a command does not itself measure objects. Rather, it prints out
summary information that was computed at an earlier time. @easur e sunmary will
tally up the current total of your object sizes for reporting by the @uot a command.

Building 91

mailto:@measure

@reasur e new
@reasure new [<pl ayer >]

In a MOO that uses byte-based quota, you can only have a fixed number of
unmeasured objects. After that, you can’t create any new objects until the current
ones have been measured. This can be a problem if you need to create a large
number of small objects. They don’t take up more than your allotment of quota, but
still you can't @r eat e more until they’ve been measured. The symptom of this
particular problem is an error message that reads, “Resource limt exceeded.”
@reasure new alleviates this. Once the new objects have been measured, you can
go on to create more if you want to. If you are assisting someone with this dilemma,

you can type @easur e new <per son> to measure that person’s new objects instead
of your own.

@reasure recent [<nunber of days>] [<player>]

This measures those objects (yours or the specified player's) that haven't been
measured either in the specified number of days, or, if no number of daysis specified,
the ordinary cycle of the measurement task. If no player is specified, then it measures
your objects.

@reasur e breakdown <object>

If you just can’t figure out why an object is SO BIG, the @easur e breakdown
command will print alist of how much space each property and verb takes up, and,

hopefully, provide you with some clues. Y ou can optionally have the output sent to
you via M OOmail, but be aware that the message itself takes up quota.

@newmessage, @unmessage

In general, only programmers can add properties to and remove properties from
an object, but builders can add and remove message properties. This is a pretty
obscure aspect of building, and I’'m only going to treat it briefly. There are avery few
occasions where different things will happen depending on the presence or absence
of a certain message properties. Some room descriptions will incorporate an object’s
.1 ook_nsg property, if present. If an object has a . carri ed_nsg property, some
player classes will integrate the message into a player’ s description.

A builder who does not have programming privileges can still add a message
property asfollows:

@ewressage <nessage- nane> [<message>] [on <obj ect >]
and remove a message from an object if it is no longer wanted or needed:
@nnessage <nessage- hame> [from <obj ect >]

92 Building

mailto:@unmessage

@check-chparent

This command would be useful if you had added a message to an object, then
tried to change the parent of that object to a generic that also had the same message.
An object can define a property or inherit it, but not both. Programmers probably
find more use for this verb than builders.

Creating a Mailing List

Building a mailing list is a popular thing to do, but requires extra steps so others
besides yourself can use your mailing list, too. First, create the list, using the generic
mail recipient as a parent:

@reate $mail _reci pi ent named <new |list name>
Next, give your list a description, explaining what its intended topic is:
@lescri be <your list> as "<description>"

Then, to make it a public list that anyone can read and to which anyone can
post, do:

@et <your list>readers to 1

Last, to make your mailing list publicly available so that people can subscribe to
it, do:

@move <your list> to $mail _agent

Note that $mail_agent won’t accept a list that lacks a description. See aso hel p
$mai | _reci pi ent.

Building 93

Room Integration and Exit M essages

Integrating objects into a room’ s description, adding messages to exits, and (to a
lesser extent) describing exits can enrich a user's VR experience at the expense of

relatively little effort on the part of a builder. This extended example illustrates each
of these techniques.

Suppose you have a front room and a porch, situated east-west relative to each
other, and a screen door in-between:

S +
| EEEREEEES +
| Front | |
| Room
| | |
| | |
+---+--- -+----+ Porch |
| | |
| Kitchen | |
R T o e e +

The Front Room

You are in the front roomof a guest cottage. There are a
few chairs and a braided rug. A small kitchen is to the
south. There is a screen door to the east.

Por ch
You are on a breezy, screened-in porch. A rocking chair and
a porch swing invite you to stay and relax for a while. A
screen door |eads west into the cottage, steps |lead down to
the [awn.

Here are the steps you would follow to make an integrating room with exit

messages:
1. Start by making the rooms' descriptions clearly mention the obvious exits, so

that people don’'t have to guess or use meta-VR commands such as @vays, since this
isintended to be awelcoming place for people to visit, and not a puzzle.

2. Describe the exits. This means describing what someone would see if they
looked in the direction of the exit, for example, | ook east.

Stand in the front room and type:

94 Building

@lescri be east as "You see a weathered but sturdy screen
door, held closed by a spring. The top screen has a snall
tear in the |ower left-hand corner.”

Stand on the porch and type:

@lescri be west as "You see a weathered but sturdy screen
door. The handle and hinges are rusty but serviceable. The
top screen has a small tear in the lower right-hand corner.”

Notice that in writing these descriptions, | have implicitly decided that the door
opens outwards onto the porch -- that’s the side that the hinges are on. We can use
this detail later to intensify the “VR feel” of things. The descriptions don’t have to be
elaborate, but it's nice if they add some new information to what’s already there in
the rooms’ descriptions.

3. (Optional, but nice) Use | ook_nsgs for the exits' descriptions instead of
describing them in the room’ s description proper. (Yes, this contradicts step 1.) The
reason for doing this is so that the exits will consistently be mentioned at the end of
the description, no matter how many other objects . | ook_nsgs areincluded.

Some rooms can integrate objects and exits into their descriptions.® By
convention (on LambdaM OO and YibMOO at least), an integrating room checks to
see which objects and exits have a . | ook_nsg property and/or a : | ook _nsg verb,
and, if so, incorporates those messages into the description instead of baldly listing
the them in the room’ s contents afterwards (in the case of objects).

Why bother with this? Lets start by redescribing our Front Room, which had
exits leading southwest to the kitchen, stairs leading up, and our east exit onto the
porch. And let's put in a fireplace object, so we can see how the .| ook mnsg
propertiesinteract. Starting with no | ook_nsg properties on any objects or exits:

The Front Room

You are in the front roomof a guest cottage. There are a
few chairs and a brai ded rug.

You see fireplace here.

@rop south.look_nmsg "A small kitchen is to the south”
@rop east.l ook _nsg "There is a screen door to the east."

Now if we were to look at the room, we' d see this:

The Front Room

You are in the front roomof a guest cottage. There are a
few chairs and a braided rug. A small kitchen is to the
south. There is a screen door to the east.

You see fireplace here.

5 One integrating room generic on LambdaM OO is #17755 (Integrating Detail Room Mark 111). See
also #9805. On YibMOO, you can use the YibCo(tm) Multi-Media Modular Room (#237) in conjunction
with the Integrating Description Module (#259).

Building 95

This is strikingly like what we had before, but watch this. Now we'll put a
. 1 ook_nsg on the fireplace, too:

@rop fireplace.l ook_nmsg "Against the west wall is a large
stone fireplace."

Now the description becomes:

The Front Room

You are in the front roomof a guest cottage. There are a
few chairs and a braided rug. Against the west wall is a
| arge stone fireplace. A small kitchen is to the south.
There is a screen door to the east.

We could add a painting (assuming you have an object that is a painting):

@rop painting.look _nsg "A portrait of soneone, vaguely
fam liar, hangs on the north wall."

The Front Room
You are in the front roomof a guest cottage. There are a

few chairs and a braided rug. Against the west wall is a
| arge stone fireplace. A portrait of soneone, vaguely
famliar, hangs on the north wall. A small kitchen is to

the south. There is a screen door to the east.

The beauty of it is that you can integrate any number of objects into the middle
of the description, and still have the exits described at the end, where they are easy to
find.

4. Give the exits messages. Exit messages govern what the player sees and what
others see when a person goes through the exit. There are six to set (besides
.l ook_nmsq):

@ eave <exit> Thisiswhat the player sees when e leaves by an exit.

@l eave <exit> Thisiswhat other people in the room see when a
player leaves by an exit.

@urrive <exit> Thisiswhat the player sees after passing through the
exit and arriving at the new location.

@arrive <exit> Thisiswhat others at the destination see when the
player arrives.

@ogo <exit> Thisiswhat aplayer seesif he can’t get through the
exit for any reason.

@nogo <exit> Thisiswhat other people in the room seeif aplayer
tries an exit but can’'t get through.

Pronoun and verb substitutions are addressed at length in the programming
tutorial (see page 108), or you can read the online help text in help pronouns.

96 Building

Briefly, % substitutes the name of the player, % is the subject pronoun
(he/she/eletc.), % is the possessive pronoun (his/her/eir/etc.), % is the reflexive
pronoun (himself/herself/emself/etc.), %® is the object pronoun (him/her/em/etc.).
These are the ones most commonly used for exit messages. There are others. Third
person singular verbs, when surrounded by angle brackets (<>) and preceded by the
percent sign (99 will agree with the gender of the player. Specifically, the messages
will print correctly even if player’ s gender is set to plural. For example:

9N %<goes> t hrough the door.
would yield:

Yi b goes through the door.
but:

Bits go through the door.

Let’s start with the east exit from the front room to the porch, then do the west
exit from the porch to the front room. It's easiest to add the messages if you are in
the room that is the exit’s source, rather than the destination. (If you are elsewhere,
you’ll have to refer to the exits by their object numbers rather than by name.)

Starting in the Front Room:

@ eave east is "You push open the screen door and head out
to the porch.”

@l| eave east is "N %pushes> open the screen door to the
east and %<heads> out to the porch. The door slans shut

behi nd %0."
@rrive east is "The screen door slans shut behind you with
a bang."

@arrive east is "9 %conmes> out through the screen door to
the west. The door slans shut behind %o."

@ogo east is "You push on the screen door, but soneone
seens to have nailed it shut."

@nogo east is "% Y%pushes> on the screen door, but soneone
seens to have nailed it shut.”

Now for messages on the exit going the other way. From the Porch:

@eave west is "You pull open the screen door and head into
the cottage."

@| eave west is "9 %<pul | s> open the screen door to the
west and %<goes> inside. You wince as the door slans shut
behi nd %0."

@rrive west is "The door slans shut behind you."

@arrive west is "9 %cones> in through the door to the
east. You wince as it slans shut behind %."

@ogo west is "You try the door, but it seens to be nailed
shut . "

@ogo west is "N %tries> the screen door, but it seens to
be nailed shut."

Building 97

A few comments:

I's good for the oleave (and sometimes oarrive) messages to mention the
compass direction (if there is one). This helps others keep their bearings of where

they are and what’'s beyond. It's especialy good for when one player is following
another.

Often it's sufficient to set only the leave message or only the arrive message,
rather than both, such as when a player is going through an open doorway, for
example. In the above example, | used the screen door slamming for the arrive
message, to add to the effect.

If the exit is likely never to be locked or otherwise impassable, it’'s acceptable to
omit thenogo and onogo messages.

Give some thought to who hears/sees what. | wanted to embellish the feel of the
door slamming, and did that by having people wince, but didn't want to bombard
them with it by using it in every single message. | chose to have people on either side
of the door wince when someone goes in, but no one wincing when someone goes
out. The choice was arbitrary, but deliberate. Paying attention to small details will
give your work arichness that it might otherwise lack.

This may seem like a lot of work on top of @i g (voila, you have an exit), but
exit descriptions and messages give areas on the MOO a much stronger VR feel, and
make any area more fun and interesting to explore. The messages don’'t have to be
fancy, but they should be appropriate to the situation

Deter mining a Room or Object’s Contents Definitively

_ Let'srevisit the fact that every object has a property called . cont ent s, which is
either a list of object numbers or the empty list. Each of those listed objects will

reciprocally have thisobject inits. | ocati on property.

Normally, when you look at a player, you will be presented with alist of things e
is carrying, and when you look at a room, you will be told about things you see there.
There are ways, however, for a programmer to camouflage or conceal what is in a
room, container or player, and there are ways to circumvent such programming. First
I will discuss camouflaging, then circumvention.

Integration — The basic room class shows you the room’s description, then lists
the non-player objectsin it, then the players present:

The Conservatory

You are in a glass-sided roomfilled with orchids,
bronel i ads, and other tropical plants.

You see trowel here.

Gardener is here.

A room class that supports object integration, on the other hand, will check for a
special property on the objects within it and integrate that text into the description
itself. The property usually has the name . | ook _nsg. If our conservatory were an

98 Building

mailto:@dig

integrating room, and if the trowel had a .| ook _nsg saying, “Off to one side is a
trowel,” then the room’s description would look like this;

The Conservatory

You are in a glass-sided roomfilled with orchids,
broneliads, and other tropical plants. Of to one side is a
trowel .

Gardener is here.

Integrating objects into a room’s description has advantages and disadvantages.
The main advantage is that the text is more pleasing to read, and many builders
choose integration for this reason, rather than from any intent to deceive. The
disadvantage is that the hapless explorer might now overlook the fact that the trowel
is an object (which might be interactive or relevant to the scene at hand) or would
have to spend time trying to examine the orchids and bromeliads which are merely a
part of the description and not actual objects. A practiced MOOer might realize that
in integrated rooms there is typically one sentence per integrated object, and
therefore guess that “orchids, bromeliads, and other tropical plants’ are so-called tiny
scenery and that the trowel is a bona fide object, but there is no reliable way to tell for
sure just by looking.

Darkness — Rooms have a . dar k property, which, if set to a non-zero value
suppresses the display of the room’s contents. Such a room might have a clue in its
description about how to turn on the light, such as, "As you grope around in
}_h% gar k, your hand encounters a string," that, when pulled, turns on a
ight.

The way to circumvent such techniques is to use the @ont ent s verb. Itisn't as
pretty, but it’s useful if you're on the prowl for objects that might do something.
Consider this example:

Undert aker's Cottage

This front roomof the cottage is reminiscent of an ol d-
fashi oned parlor, the kind one never actually went into. At
one end, an overstuffed couch, at the other a stone
fireplace. In between, six French Enpire chairs, facing
each other gloomly, three and three. Of in a corner sits
an ancient punp organ. On one of the walls is a collection

% Here's a bit of behind-the-scenes technology. It may not be of immediate interest if you are a
beginner (and you can safely skip over it if it doesn’'t make sense right now), but it may be of interest
further down the road, or if you are an intermediate-level MOOer.

When you enter a room, that room’s : | ook_sel f verbiscaled. Thisverb in turn cals the room's
s descri ption verb which assembles the text which will be displayed as the description, and it also calls
theroom's: t el | _cont ent s verb which does the actual work of printing out what objects and players you
“see” when you enter or look at the room. The:tell _contents verb calls the: cont ents verb which
usually returns the value of theroom’s. cont ent s property BUT aroom’s owner, can, if e wishes, cause the
:contents verborthe:tell _contents verbto giveincomplete or spurious information. In the case of a
room with integrated objects, the: descri pti on verb tells you more (the integrated objects are integrated)
and the : tel |l _contents verb tells you less (integrated objects are omitted, so as not to be mentioned
redundantly). So in the quest for more pleasant prose, information is regrettably lost (i.e. which nounsin
the description represent actual objects of possible interest).

Building 99

of portraits. Doors to the northeast and sout hwest stand
slightly ajar, as if sonmeone were beyond them watching...
or waiting. Everything is covered with a |layer of dust.
Col d stone steps | ead down into darkness.

You see The Undertaker and Epitaph Registry here.

Yib is here.

@ontents here

Undert aker's Cottage(#101792) contai ns:

The Undert aker (#666) a fireplace(#78070) punp

or gan(#73881) Col l ection of portraits(#14627) Epi t aph
Regi stry(#15588) Yi b(#58337)

If you were exploring this room to see what might be done here, you would
examine the undertaker, the fireplace, the pump organ, the collection of portraits,
and the epitaph registry. You wouldn't bother with the overstuffed couch, the
empire chairs, the dust or the cold stone steps.

To summarize, then, objects can contain other objects. The contained objects
are stored as a list of object numbers in a property named . contents. There is a
:contents verb which usually returns a complete list of an object’s contents, but

which can also be programmed not to do so. The @ont ent s command displays a
definitive list of an object or room’ s contents, irrespective of other programming.

100 Building

Chapter 6 — Programming

A Brief Overview of What it sand How it All Works

Building transcends the VR in that when you @r eat e objects and @li g rooms
you are using the system as a computer system rather than acting strictly within the
bounds of the MOO’s frame story or virtual reality. Programming takes things one
step further, in that you create new and original ways for objects to behave. This
section presents an abstract overview of how that process works. The following
section, “Yib’'s Pet Rock”, is a hands-on tutorial.

First Principles

| take on faith the mechanics of how text travels from your keyboard to the

MOO and from the MOO to your screen, and ask you to do so as well. At some later
time you may wish to investigate these for yourself, but they are beyond the scope of
this book.

The MOO is made of two principal parts, the server and the database.

The Server

The server is the program that runs on the MOQO' s host machine. It accepts new
connections, interprets the commands you type, causes various things to happen in
the database because of what you type, and causes some text output to appear on your
screen. A command is precisely a line of text that you type with the intention of
getting a response from the MOO. This cycle, you typing a command, the server
executing it, and output (usually) displaying on your screen is referred to as atask, or,
more accurately, aforeground task.

The Database

The database is the entirety of all the objects on the MOO, including all their
properties and verbs. (The core databaseis the database that is there when a new MOO
first starts, before any new objects, properties, or verbs have been added.) A property is
a named piece of data associated with a particular object. Where do properties come
from? They are added to objects on an as-needed basis by programmers, using the
@roperty command. A verb is a named sequence of instructions that the server
carries out (or executes). On MOQOs, the terms program, command, and verb are often
used interchangeably.

101

The Par ser

A command consists of one or more words that you type, separated by spaces.
One of the things that the server does is analyze (parse) the line of text that you type,
and try to identify which verb on which object it should execute. The part of the
server that does this is called the parser. The first word of the command you type is
the name of the verb. The rest the words you type (if any) are called arguments,
which are items of information that the verb needs in order to work properly. Let's
consider afew example commands and talk about their arguments:

take rabbit from hat

put hat on table

pet rabbit

page help I'"'mtrying to understand parsing, can anyone
explain it to ne?

hone

For every command, the parser tries to identify an object with a verb of that
name on it that it can run, and it considers sets of objects and their associated verbs
in a particular sequence. This sequence is the player emself, any feature objects that
the player has, the room the player is in, the direct object of the command, and the
indirect object. Looking at these examples, you might intuitively figure out that if
thereisa hat nearby, with averb that lets one t ake thingsf r omit, that might be an
appropriate verb to run, and you would probably be right. Then, if thereisat abl e
in the vicinity, and averb that lets one put things on it, that might be an appropriate
choice, and so on. Some commands, like page and hone don't take direct objects,
prepositions, and indirect objects. They take other items of information instead, or
no information.

When a programmer creates a verb, e must specify what arguments (if any) the
verb uses. These are called argument specifiers. When the parser identifies an object
and a verb with argument specifiers that are appropriate to the command that was
typed in, we say that it matches the object or matches the verb on the object.

If the parser can’t identify an object with an appropriate verb to run, the server
sends the following text to your screen:

| don't understand that.

Tasks

As mentioned above, the cycle of your typing in a command, the parser
matching an object and a verb to run, and then output (usually) appearing on your
screen is called aforeground task. There are three basic kinds of things that any task
can do: It can send information (text) to be displayed on your screen. It can modify
the database in one or more ways, including changing the values of properties or
even creating new verbs to run in future tasks. And it can start up another task that
does something else, either later or at the same time, but independently. These tasks
are called background tasks. They can do the same three things that foreground tasks

102 Programming

do, including starting up additional background tasks. Every background task has a
unique numerical identification number called itstask id. A list of background

tasks (identified by t ask_i d) that are scheduled to run at a later time is called a
queue.

How Are Propertiesand Verbs Created?

There are two commands that are fundamental to the programming process, and
these are @r operty and @erb. Like any other command, someone types them in
(with some arguments), the parser figures out which object is to receive the new
property or verb, and then the server runs the verb that causes new properties or
verbs to be added to an object.

The @r operty Command

The syntax for adding a new property to an object is:

@roperty <object>. <property nane> <initial value>
[<permi ssion flags> [<owner>]]

The property name can be anything you want except that it may not contain
any spaces. The initial value can be anything you want, but text should be enclosed
within double quotes (""). The permission flags can be any combination of the
letters“r”, “wW’, and “c”. They govern who else may access those properties. (A flagis
a tiny bit of data, usually stored as a1 or a 0 (often though not always signifying
“yes’ or “no”) within a larger piece of data) If you include the letter “r” in the
permission flags, then anyone may read the value of this property, and anyone’s verb

may access and use the value of this property. If you include the letter “w” in the
permission flags, then anyone may change the value of the property, and anyone's

verb may change the value of the property. The “w’ flag is hardly ever used; there are
safer ways to permit others to vary the value of a property in limited ways that you
control. The “c” flag controls who is allowed to change the value of the property in
the case that someone else makes a child of your object. If you include “c” in the
permission flags, then the owner of the child object can change it, and your verbs

can't change it. If you don’t include “c” in the permission flags, then your verbs can
change the property’s value, even on child objects owned by others, but the owners

of the child objects can’t change the value of the property directly. Thisis a concept
that many people wrestle with, so don’t be discouraged if it doesn’t make sense right
away. It's mentioned several times in the “Yib's Pet Rock” tutorial (page 108), and
explained again in the programming reference section (page 156).

When a letter is included as a permission flag, we say that that flag isset. When
a letter is omitted from the permission flags, we say that that flag is clear. For
example, the“r ” flag isusually set, and the “w’ flag should almost always be clear.

Programming 103

The @er b Command

The syntax for adding a new verb to an object is:

@erb <object>: <verb nane> <direct object specifier>
<preposition specifier> <indirect object specifier>
[<perni ssion flags> [<owner>]]

The verb name can be anything you want except that it may not contain any
spaces and should not begin with the asterisk character (*). The argument specifiers
are three generalized expressions of the direct object, preposition, and indirect object
that are used by the parser when trying to match a verb to run. The direct object
specifier and indirect object specifier can be either this or none or any. The
preposition specifier may be either any, none, or one of the list of permissible values
(such as in or on) given in the Programmer’s Reference Manual and the
programming reference section (see page 163). The permission flags for a verb can be
any combination of the letters“r”, “x”, or “d”. If the“r” flag is set, then others may
read the verb. If the “x” flag is set, then other verbs may use this verb as an
intermediate step in their own execution. The “d” flag is obsolete but should always
be set; it used to govern whether an error, if one was encountered, should cause the
verb to cease executing immediately and produce a traceback or be ignored. A later
version of the server provided other ways to handle error conditions without causing
tracebacks, nevertheless, the programmer’ s manual indicates that while obsolete, the

“d” flag should always be set”. A wizard can set the owner of the verb to be someone
other than emself.

Here' s an example of adding a new verb to an object:
@erb coll age: paste any onto this rxd

(Such averb might be used to program a collage object so that you could paste
anything onto it to create awork of art.)

"Round and 'Round We Go...

After averb is added to an object, a programmer then sets to programming it, i.e.
specifying, in terms the server can understand, just what it is that the verb is to do,
either with the @r ogr am command (explained in the programming tutorial, page
108) or using the verb editor (explained in the section on using the in-MOO editors).
Programming is an “iterative process’, which means that it usually takes several tries
before a verb works just the way it was originally intended to.

T Pavel Curtis, The LambdaM OO Programmer’s Manual, section 2.2.3.

104 Programming

The Nitty-Gritty: What Goes On Inside All Those Verbs?

In anutshell, verbs start up, process data, and then finish.

Starting Up

When you type a command, the first word of what you type is the name of a
verb, and you are said to be “invoking that verb from the command line”.
Sometimes these verbs are called command-line verbs. Other verbs, though, are only
meant to be invoked (or called from within other verbs — they perform some
intermediate function and return a result, which the calling verb then uses as if the
function had been written into the calling verb itself. These verbs, called from other
verbs, are called subroutines. Regardless of whether averb is acommand-line verb or a
subroutine, al verbs do some initial start up processing when they are called or
invoked, and this consists of setting up some variables.

A variable islike aproperty in that it is anamed piece of data. Unlike a property,
however, a variable only exists and has meaning while averb is running. Also unlike
properties, variables aren’t stored with objects — so they can’t be accessed by other
players or other verbs. We say that they are “internal to the verb” or local, whereas
properties are “external to the verb” or global. In the MOO programming language,
variables are said to be dynamically allocated, which is a fancy way of saying that as
soon as a line of MOO-code assigns a value to a variable, voila that variable comes
into being and contains the value that the verb just assigned to it.

There are different kinds of values that variables can hold, and in the computer
world, “kinds of values’ are referred to as data types. In some programming
languages, you have to specify at the beginning of a program what variables will be
used and what kind of data each will hold. A counter, for example, might be of type
integer, while a variable intended to hold a person’s name would be of type character
string. In the MOO programming language, you don’t have to declare in advance
what type of data a variable will hold, and a variable can hold different types of data
at different times. There is a way to ascertain what type of data a variable is holding
at any particular time, if one needs to know that.

When a verb is first invoked, certain variables are automatically created right
away, and are assigned values before anything else happens. These are called built-in
variables. The data these variables hold are always available for use within the body
of the verb itself. They include the object number of the player who typed the
command, the direct object (if any), the indirect object (if any), and a special variable

called args, which holds a list of anK other pieces of information the verb or
subroutine needs to do its work — in other words, the arguments. For a command

line verb, the value of the variable ar gs isalist of just those things the player typed —
the direct object, the preposition, and the indirect object, or the content of a paged

message, for example. Subroutines may need other pieces of information, however.
If a subroutine’'s job is to take a list of numbers and sort them, for example, then it

needs to be told what numbers to sort, and that’s what would be in its ar gs variable.

Programming 105

It isthejob of the calling verb to send the right arguments to a subroutine so that the
subroutine can do itsjob correctly.

Processing Data— The Very Stuff

The basic things that verbs do are:
» Change (directly or indirectly) the values of properties on objects in the database.

* Send information to be displayed on someone's screen (or several people's
screens).

e Calculate intermediate results from given information and store them in
variables. (The “given information” is received by the verb in the built-in

variable ar gs, which is sometimes also called theargument list.)

How is all this done? The server evaluates a sequence of expressions. An
expression is a combination of letters, numbers, punctuation marks and white space
which, when evaluated, generates a value. The value of an expression can then be
assigned to a variable, or stored in a property, or ignored. Why would a value be
ignored? Some expressions have side effects, which are actions that occur as aresult of
evaluating the expression. An example of this would be displaying some text on a
player’s screen. If all you care about is an expression’s side effect(s), then you don’'t
need to store or otherwise pay attention to its value, even though it has one.

The Finish

Calls to verbs are themselves expressions When all the expressions within a
verb have been evaluated, then the verb is said to terminate. Any variables that the
verb used are removed from the computer’s memory, and a value, the final value of
the verb, is returned, either to the command line or to the verb that called it. If the
verb was called from the command line, its return value is ignored. If the verb was
called as a subroutine, then its return value may be ignored, or it may be used as a
component of a more complex expression.

In Conclusion

The substance of any programmer’s manual or programming language reference
is an enumeration of the kinds of expressions that are available, what each one does,
and (depending on how detailed the reference is) a synopsis of how to use them.
Looking at a programming reference can seem daunting, at first, but it isn't an all-or-
nothing proposition. If you know a few simple kinds of expressions, then you can
write afew simple programs. If you know awide variety of expressions, then you can
write a wide variety of programs, and everything in between. Virtuoso programmers
amass a knowledge of expressions and available subroutines the way master chefs

106 Programming

amass a knowledge of ingredients. Anyone who can read can cook, but the more you
know, the more you can do.

Programming 107

Yib’'sPet Rock: A Programming Tutorial for Beginners

I ntroduction

This tutorial was originally written on and for LambdaMOO. The overdl
objective is to give you a footing in the MOO programming environment and a feel
for what the programming process is redlly like. | will take you through the steps of
creating and programming a few objects to a fair degree of sophistication. Without
the interaction afforded by a classroom setting (or a MOQ?), it’s all but impossible to
avoid your doing at least some of the project by rote, but | hope you'll gain an
intuitive sense of at least some of it as you go along. | go light on structured
presentations and explain things as and when we need them, and (I hope) just
enough so that you can get a handle on the concepts, but not so much that they
distract from the project at hand. The point is not to teach each and every nuance in

painstaking detail, but rather to give you some exposure to the kinds of things that
can be done and how to begin doing them.

The MOO Programming Reference section that begins on page 156 is a more
structured presentation, and those who prefer to begin with an overview should skip
ahead and come back to this chapter afterwards. Both styles of presentation work in
concert. A few things mentioned earlier in the book are repeated here, for review and
for the benefit of those who may have skipped ahead to this chapter.

I will explain how to inspect the code on an object (yours or someone else’s),
because this is one of the major methods of expanding one’ s existing knowledge and
horizons. | will suggest a polite way to ask for help from more experienced players.

Nobody writes bug-free code, including this author. If you write your code
thinking that it will work perfectly the first (or second) time, you are setting yourself
up for disappointment. Debugging is an adventure; it’'s detective work. If you find a
bug, celebrate! Y ou’'re that much closer to fixing it and moving on to the next one.

I hope to demonstrate what | consider to be good programming style, and to
point out ways to improve the inherent quality of your objects by making them
robust. It's one thing to whip up a prototype that works, and quite another thing to
make a finely-crafted object that is easy for others to understand and use. Although
we will be making fairly simple objects, what you learn in their making will transfer
to making larger, more complex objects. Polishing is an important part of that
process.

Last, by showing you a variety of tools and how to use them, | hope to launch
you on ajourney that is as much fun for you as mine has been for me.

Preamble and Prerequisites

If you don’t already have one, you will need a programmer bit. There are severa
ways to get one, though in general you have to get one from a wizard. On some
MOOs, the process of getting a programmer bit is automated. One common way isto

108 Programming

give yourself a gender and description, then send mail to *wi zar ds containing the
text, “May | please have a programmer bit?’

While this tutorial can be done without a copy of the Programmer’s Manual,

you'll get much more out of it if you have one. The programmer’'s manual is
ordinarily available by FTP from ftp.lambda.moo.mud.org. The file names are:

pub/ MOQ Pr ogr ammer sManual . t xt
pub/ MOQ Pr ogr anmer sManual . ps. Z.

The .txt one is readable as plain text. The . ps one is for printing on a
PostScript® printer. The . Z means the file has been compressed (use unconpr ess to
decodeit). (How to use FTP is beyond the scope of this book.)

You will need to know how to edit things on the MOO, which is addressed in
Chapter 4 — Using the Mail System and the Editors.
If you find this tutorial too laborious, and/or if you want to go on to do another

supervised project after those presented here, see also yduJ s Wind-up Duck tutorial,
which isfound in the Library on LambdaM OO.

Some Conventions

Typically, though not universally, commands that call attention to the fact that

we're working on a computer begin with an “@ sign. @di t is one, @ho is another.
Commands that are consistent with the Virtual Redlity usually don’t begin with an

“@ sign, such as| ook or dr op.

Angle brackets “< >" indicate a place-holder for an actual value that you must
supply at the time. For example, if | instruct you to type exam ne <obj ect >, you

willge/pe_exam ne rock or exam ne tree or examn ne book depending on the
actual object of interest. If you are holding an object or if an object is in the same

room with you, then you can refer to the object by name. If you aren’t holding or
with an object, you can refer to it remotely by using its object number instead. One
way to find out an object’s number is to examine it. You can always get a list of
objects you own, and their numbers, by typing @udit ne. You can aso type
@udi t <pl ayer > to see alist of objects that someone else owns.

It's nice when objects have help text, and the ones we make will. But if an
object doesn't have help text, the system will tell you to try exam ne <obj ect >.
Some people prefer @xam ne <obj ect > instead. What's the difference? @xamni ne
<obj ect > will show you all the verbs associated with an object, whether they’'re

meant for you or not. Some people prefer this completeness. Exani ne <obj ect >
can be tailored by the object’ s owner so that only relevant verbs appear, or so that all

the verbs appear in a more logical order, and it’s a more polished look. 1 will teach
you how to tailor what someone sees when e examines an object you have
programmed.

Asterisksin verb names: If you type exam ne $t hi ng, you will see:

Programming 109

generic thing (aka #5 and generic thing)
Owned by Haakon.

(No description set.)

Obvi ous verbs:

g*et/t*ake $thing

d*rop/th*row $t hi ng

gi *ve/ ha*nd $thing to <anythi ng>

The asterisks indicate ways in which you can abbreviate a verb when typing it.

So get $thing andg $t hi ng do the same thing. In aroom, you can typel ook or

| to the same effect. You ma¥ put asterisks in your verb names or leave them out.
Does it matter? Sometimes. If you're going to embellish an existing verb, then you

have to type in the verb name as given. More on this later.

A quick note about formatting. The MOO programming language will let you
separate its different elements with any combination of spaces, tabs, and line breaks
except that a quoted string, such as "You have to be holding that to use

it," may not have aline break in it. 60ny line breaks within quoted strings in this
tutorial are artifacts of typography.) hen typing in commands or lines of MOO

code, type in quoted strings as one long ling, even if they are longer than a physical
line on your screen.

Let’'sGo!

Well!l Let's stop beating around the bush, and make something already! We're
going to make a pet rock. Pet rocks don't do much, but it's good to start small.

Think of it as a stepping stone to bigger and better things. Type in the following (as
onelong line):

@reate $thing naned "<your name>'s pet rock","pet
rOCkll , n r OCkll , n pr n

Whew. Let'slook at that. @r eat e is the command for making a new object
What about that “$” sign in $t hi ng? Some objects are so basic to the system that
they havcla8 sort-of universal names, and we never have to remember their object
numbers.

When you created the rock, you gave it a list of names, in double quotes,
separated by commas. The first one is its actual name. The others are aliases, and
you can use any of them to refer to your rock if you are holding it or in the same
room with it. [If you want to change or adjust the name or aliases, see hel p

@ enane, hel p @ddal i as and/or help @nalias. Seeasohel p @reate for dl
the low-down nitty-gritty on creating things. If you wanted to, you could give it only

aname, and no aliases, or you could name it Malcolm, or Fred, or whatever you like.

B Where do they come from? They’re designated by wizards on object #0. If you were to look at
#0.thing you would see #5 (generic thing). So $t hi ng means #0. t hi ng, and $not e means #0. not e, and
Sso on.

110 Programming

mailto:@addalias
mailto:@rmalias
mailto:@create

Programming is about making choices, and it’ s the choices you make that make your
programming yours.

You also don’'t have to put quotation marks around the aliases. (I do it out of
habit — the two are equivalent.) Speaking of quotation marks, if you want to include
the quotation mark character in a string, precede it with the backslash character “\”.
Names and aliases can’t contain commas.

Well, at the moment, our rock doesn’t look like much. Let'sgiveit adescription.
| did mine this way:

@lescribe rock as "A small rock. It looks friendly, but
doesn't do nuch."

Okay, let’s cut to the chase! Time to put averb on that rock:
@erb rock: pet this none none rxd

The @er b command is how we add commands to objects. Some are “obvious
verbs’ that show up in exani ne, and others aren’t. If you examine your rock now,
you won't see the verb you just added. And if you type pet rock, the system will
respond with| don't understand that. (Tryityoursdf, justtobesure) That's
because we haven’'t programmed the verb, yet. But hang on, here we go.

There are two ways to accomplish this. One isto type in the verb all at one go,
asfollows:

@r ogram rock: pet
pl ayer:tell ("You pet the rock. Nothing happens.");

Notice the period on aline by itself at the end. That’s an essentia part.
The other way to program the verb isto use the verb editor, like this:

@dit rock: pet
ent er
pl ayer:tell ("You pet the rock. Nothing happens.");

conpile
done

You should type in each line exactly as given. The semicolons at the end of

some lines are part of the program, for example, and the word ent er is an editor
command.

If you get a compiler error message, don’t panic. You probably made a typing
mistake. See which line it had trouble with (there aren’'t a lot of choices, with this
verb, but there will be, later), and check for a missing semi-colon, mismatched quote-
marks, a period instead of a colon, etc. How do you check? With compiler errors,
you have to do it by using verb editor as shown in the second example above. Type
in your verb. Type conpi | e. When you get the compiler error, typelist or |i st
1-$ to see the lines listed with their associated numbers. Lines are delimited by
semicolons; if you leave one out, the compiler may report the problem as being on
the prior or subsequent line than the one the error is actually on. So for an error on a

Programming 111

given line, also check the lines before and after the one that the compiler clams is
problematic.

Now we'rerolling! Examine the rock. Pet therock. Celebratel

Got atraceback? Don’'t panic. Read it, see which line is problematic, then check
that line and any lines near it. Tracebacks are good (in an intermediate sort of way).
They help usfind and fix bugs faster.

To fix aprogram (or change it), you can either type in the corrected version from
scratch (@r ogr am rock: pet) or use the verb editor (@dit rock: pet). Note that
once you have created a particular verb with the @er b command, don’'t use @er b
to add it again. That’s a once-only operation. Just change it with @r ogram or
@dit.

But What Did | Just Do?

Before we move on, | want to explain a bit more each of the lines | just had you
typein.

@erb rock: pet this none none rxd

@/er b tells the system to add a verb to an object. Let's look at rock: pet.
“Rock” identifies the object. “:” signifies a verb, as opposed to a property. “Pet” is
the name of the verb. The words “t hi s none none” are the argument specifiers for
the verb, and expressin aformal way how the command will be typed in by the user.
In this case, we want the command to be pet rock with no preposition or indirect
object. “r xd” meansthat it's readable by others (r), callable by other verbs (x) (think
“eXecutable”), and will generate a nice, informative traceback (d) (think “debug”) if
something goes wrong.

pl ayer:tell ("Nothing happens.");

Pl ayer is a built-in variable that always refers to the player who typed in the
command. :tell isoneway to cause text to be displayed on someone’s screen. The
parentheses surround what we' re going to tell that player. In this case, we' ve typed in
a string, delimited by double quotes, that the player will see. Strings delimited with
quotes, object numbers, and some arithmetic numbers are called literals (as opposed
to variables). It is bad programming hygiene to put literals in your verbs (with a few
exceptions), and we'll be cleaning that literal out and replacing it with something
better shortly.

In fact, let’s do that now. Instead of embedding the text in the verb (bad), we'll
extract it into a property (good). And this is going to be a special kind of property
called amessage. Typethis:

@roperty rock. pet _nsg "Nothing happens." rc
Notice the period instead of the colon between the word “rock” and the string

“pet_msg”’. This, along with the fact that we're using the @r operty command tells
the system that we're adding a property and not a verb. " Not hi ng happens. " isthe

112 Programming

initial value of our property. We can change it later if wewant to. “r” means that the
property is readable. In general, specify “c” when you expect to change this property
from the command line, and not from within a verb. Leave the “c” out if you do
intend to change the property from within averb. (A detailed discussion of what the

“c” flag means and how to use it begins on page 165.)
Now, edit the verb to use this message. Either @dit rock: pet to usetheverb
editor, or @r ogr am r ock: pet asfollows:

@r ogram r ock: pet
pl ayer:tell (this.pet_nsg);

Notice that instead of a string in quotation marks, we' ve put in a property name
instead. “t hi s” refers to the object on which the verb is defined, in this case, your
rock. “. pet _nsg” refersto the property we just created.

Now pet the rock:

pet rock
Not hi ng happens.

Hmm. Something’s missing. Right! | forgot to put in “You pet the rock,” first.
Weéll, it's easier to change a property, especially a message property, than to re-edit
the verb, and that’ s one of the reasons why we put messages in properties. Observe:

@et rock.pet_nsg to "You pet the rock. Nothing happens.”

or:
@et rock is "You pet the rock. Nothing happens.”
The second form works becausethe property’s name endsin _nsg.
Now pet therock again. Voilal See how easy thisis? If you wanted to you could
try:

@et rock is You pet the rock. Nothing happens. What
f ool i shness!

Sharing the Experience

Now let’s go public, so to speak, and make our petting action visible to others.

The business of programming has many phases. Among them | number
deciding what you want the object to do, thinking up various ways one might do it,
seeing if it can be done at all (prototyping), finding a better way to do it. The last one
tends to be repeated, and deciding when one has gone far enough is part of what
makesit an art.

So. What do | want it to do? | want it to announce to other players in the room
that I’ m petting the rock.

Programming 113

What are some ways that | might do it? New programmers may not have a clue
where to begin. Experienced programmers may have a sense of “the usual way to do
it”, if it's a commonly-done thing, or will investigate how other people have done it,
if it'sathing they’ ve seen before. Geniuses may come up with abrilliant, new way to
do it that may or may not be practical. For now, follow my lead. Later, I'll show you
some ways to see how other people do things. Good programmers stand on the
shoulders of giants (giving credit where credit is due, of course).

We'll do a prototype, first, to demonstrate that it can be done at al, then I'll
show you some better waysto do it. Here we go:

@r ogram rock: pet

pl ayer:tell (this.pet_nsg);

pl ayer. | ocati on: announce(pl ayer. nane +
" pets the rock. Nothing happens.");

Pl ayer.location is the room where the ©player is located.
Pl ayer. | ocati on: announce(<text>) is a verb defined on al rooms, and it
announces text to everybody in the room except pl ayer, the person who typed in
the command. The parentheses contain the arguments to
pl ayer. | ocati on: announce. Arguments are the incoming information a verb
works with. Pl ayer. nane is the . nane property of the person typing in the
command. Text in double quotation marks is plain text, also called aliteral. The “+”
sign joins, or concatenates, two strings of text to each another.

Now to test it. An interesting challenge, here, because you see the regular stuff,
but want to know what other people see. Y ou will either need to get a partner, or, if
you have the capacity to MOO with two windows at once, log in as a guest, join
yourself, and do two things at once. If you work with a partner, | recommend both of

the following: Pet the rock, and ask your partner what e sees. Ask your partner to pet
the rock and see for yourself.

Okay, that’s the prototype. It works, but leaves much to be desired. The first
step in improving the situation would be to extract the text into a second message.
But wait! The message changes depending on who is petting the rock, so we can only
put the fixed part of the message into the property:

@roperty rock.opet _nsg " pets the rock. Nothing happens.™
rc

Thisisthe part of the message which won'’t change.

It is a programming convention on the MOO to make messages in pairs, one for
the player doing the action and one for everybody else, and, by convention, the
message have the same name except that the one for everybody else is prefixed with
an “o”, for “others’. To use the message:

@r ogram rock: pet
pl ayer:tell (this.pet_nsq);
pl ayer. | ocati on: announce(pl ayer.nanme + this.opet_nsg);

114 Programming

Test it. It works, but is only a modest improvement. Modest improvements are
progress, though. (If it doesn’t work, debug it until it does. Probably a typographical
error —we all make them.)

Just as we extracted message text into a property, before, now we' re going to
extract the business of constructing a message into a separate verb of its own. This
may seem like alot of work for one little message, but the fact is that complex objects
have many messages, and we'll be able to generalize our work. So think of it as an
investment of effort that will pay off later. (And it will, | promise.)

@erb rock:opet_nsg this none this rxd

@r ogram rock: opet _nsg
return player.nanme + this.opet_nsg;

@pr ogram r ock: pet
pl ayer:tell (this.pet_nsg);
pl ayer. | ocati on: announce(this: opet_nsg());

Be sure to test your work.

What’ s new, here? What's new is that we have just created a verb with the same
name as a property. Thisisfine, and in fact desirable, as | will demonstrate later. For
now, just remember to pay close attention to the difference between “. ” and “: .

) Also, the new verb had argument specifiersof t hi s none this. Because there
is no natural English language construct in which a thing is both the direct and

indirect object of a verb with no preposition in between, we use this combination of
argument specifiers to designate an internal verb (called a subroutine) as opposed to a
command-line verb. If you examine your rock again, you will note the absence of
opet_msg from the list of obvious verbs, which is the way we want it. The new verb
returns aresult, which in turn is used by the verb that called it.

Plunging Into Pronoun Substitutions!

The time has come to learn to put pronouns into your messages.

At your leisure, you should skim help pronouns and help

$string_utils:pronoun_sub. You don't have to understand every nuance now,
but you should know that these help texts exist, and you should have a sense of their

scope, for future reference. (I still refer to them from time to time, myself.)

Suppose that when | pet the rock, you wanted the system to announce, “Yib pets
the rock. Nothing happens. Doesn’'t she look foolish!” And when Klaatu pets the

rock, we would want it to say, “Klaatu pets the rock. Nothing happens. Doesn’t he
look foolish!” and when Bits (who use the plural gender) pet the rock, we' d like it to
say, “Bits pet the rock. Nothing happens. Don't they look foolish!” (I hope you're
beginning to detect a pattern, here.)

Programming 115

Here we go.

The tool that does the work for usis called $string_utils: pronoun_sub. It
takes a string as an argument, and replaces certain special symbols with values that
are meaningful at thetimetheverbiscalled. We'll do thisin steps. Type:

@et rock.opet_nsg to "N pets the rock. Nothing happens.™
or:

@pet rock is %N pets the rock. Nothing happens.
or:

@pet rock is "N pets the rock. Nothing happens.™

Because the property name ends in “_msg” we can set it using any of these
forms. (From now on I’'m going to let that go without saying.) %\ is the special
symbol for which the player’'s name will be substituted. (In the “Learn Something
New Every Day Department”, after all these years of programming, | just noticed that
that omitting the double quotes in the second form reduces the number of spaces
between the two sentences from two to one, while using the double quotes preserves
the two spaces between the two sentences. Fancy that! Since I'm picky about
spacing, I'll use double quotes, as | always have (until | started writing this tutorial).)

Now we'll revisethe : opet _nsg verb:

@r ogram rock: opet _nsg
return $string_utils: pronoun_sub(this.opet_nsg);

Now that the code isin place, lets fancy up that opet_msg a bit more:

@pet rock is "N pets the rock. Nothing happens. Doesn't
% | ook foolish?"

% is the special symbol that substitutes the subject pronoun (he, she, e, they,
etc.) Capitalization of the substitution symbols works as you might expect, by the
way. Find away to test this new message with different genders. Either find people
of different genders to play with, or find an observer while you set your own gender
to different things. Or, if your machine and/or client software has the capability, you
can log on simultaneously as yourself and a guest for purposes of testing. Many
programmers do this.

Did you find the problem with the plural gender? “Bits pets the rock. Doesn’t
they look foolish?” Who looks foolish now? The pronouns are good, but there’'s a
little problem with verb agreement. Never fear, $string_util s: pronoun_sub will
save the day again:

@pet rock is "UN %pets> the rock. %Doesn't> % | ook

foolish?"
Now this works for everybody and everything. (Ain't life grand?) The percent
sign in combination with the angle brackets signals to

$string_utils: pronoun_sub that some adjustment may be needed for verb
agreement. From your end, just put the appropriate (English language) verbs between

116 Programming

the angle brackets, preceded by the “% sign. Write them as if they were for a third
person singular actor.

Generalizing the Message Verb

What we've done so far is work our way up to the . opet _nsg property and a

corresponding : opet _nsg verb that does spiffy pronoun substitutions, and we've
come quite along way from where we started out. And we could do another verb, if

we wanted, :feed, perhaps, with corresponding .feed nsg and .of eed _nsg
properties and an : of eed_nsg verb. (Think about how you might do that.) The
: of eed_nsg verb would look an awful lot like the : opet _nsg verb, wouldn't it? In
fact, it would bear a STRIKING RESEMBLANCE, except for the name of the message
property it referred to. Well, well. Can we capitalize on this and do something more
efficient? Y ou bet we can:

@r ogram rock: opet _nsg
return $string_utils:pronoun_sub(this.(verb));

Instead of t hi s. opet _nsg, | wrote, t hi s. (verb). Notice that the name of the

verb is the same as the message. The variable ver b is a system-provided or built-in
variable that contains a string, the name of the verb asit was called. Now do this:

@ddal i as "pet_nsg" to rock: opet _nsg

Just as objects can have aliases, so, too, can verbs. But the important part is that
when the verb gets executed, the message on which pronoun substitution is

performed and which is ultimately displayed is either this.pet_nsg or
t hi s. opet _nsg, depending on which alias was used to call verb.

And then:

@r ogr am r ock: pet
player:tell (this:pet_nmsg());
pl ayer. | ocati on: announce(t his: opet _nsg());

Tadah! We've now generalized it about as much as we can. Watch closdly.
Nothing up my sleeve, and presto!

@ddal i as "feed_nsg" to rock:pet _nsg
@ddal i as "of eed _nmsg" to rock:pet _nsg

@rop rock.feed_nmsg "You try to feed the rock. Nothing
happens. ™ rc

@rop rock.ofeed nmsg "N U%tries> to feed the rock. Nothing
happens. Natch!" rc

@erb rock: feed this none none rxd

Programming 117

@r ogram rock: f eed
player:tell (this:feed_nsg());
pl ayer. | ocati on: announce(thi s: of eed_msg());

exani ne rock

pet rock
feed rock
Heh.

Polishing the Rock

I am now going to address myself to issues of documentation. At the beginning,
writing documentation may seem tedious, and it may seem silly to add comments to
such simple programs. But comments and documentation are among the things that
separate the good craftsman from the mere hack; adding them consistently is a very
good habit to get into.

We'll start with plain help text, which turns out to be easier than you might
think. Just create and edit a .help_msg property. (It can have one line or a list of
several lines) | usually start out with an empty list, then edit that with the note
editor:

@roperty rock. help_nsg {} rc
@dit rock. hel p_nsg

ent er
Rocks make great pets! They're quiet, clean, and easy to
mai nt ai n.

Bui | d one today!

save
done

If you wanted to, you could @ddal i as "hel p msg" to rock: pet _nsg and
do pronoun substitutions in the help messages. Let’sdo that, just to see:

@ddal i as "hel p_nsg" to rock:pet _nsg
@dit rock. hel p_nsg

list

ins 2

enter

This one's nanme is %.

118 Programming

save
done

hel p rock

Recall that | asked you to read help $string_utils:pronoun_sub.
$string utils isanobject, and hasitsown . hel p_nsg property. And thereisalso
help text for the verb, : pronoun_sub. How do they do that? If you typed @i st
$string_utils:pronoun_sub (it'srather long), you would see some lines at the top
in double quotes, with semicolons at the end. Y ou would probably recognize these as
comments, and you would be right. Comments that appear at the top of a verb
(before any other lines of code) will also appear as help text for that particular verb.
Even though our verbs are small and simple, let’s add comments to them:

@dit rock: pet

ins 1

ent er

"Usage: pet <this>";

conpile
done

hel p rock: pet

Do the same for the : feed verb. At the top of the : pet _nsg verb, put a
comment that says, “This verb does pronoun substitutions on various messages.”
Test your work.

And now, for the icing on the cake, because we can, we' re going to customize the
output when someone types exani ne rock:

@rop rock.obvious_verbs {} rc

@dit rock.obvious_verbs
ent er
pet %what >
feed %what >
gi ve/ hand %what > t 0o <anyone>
get/take %what >
dr op/ t hr ow %what >
hel p %what >

save
done

@erb rock: exam ne_verbs tnt rxd

@r ogram rock: exam ne_ver bs

Programming 119

"Returns a list of obvious verbs, substituting the string
the player typed in for %what>";
what = dobj str;
vrbs = {};
for vrb in (this.obvious_verbs)
vrbs = {@rbs, $string utils:substitute(vrb,
{{"%what >", what}})};
endf or
return {"Cbvious verbs:", @rbs};

exani ne rock
exani ne pet rock

The . obvi ous_ver bs property should seem fairly obvious to you by now. Let's
take a quick look at that : exani ne_ver bs verb. It's an internal verb that’s called
when you exani ne something. It has acomment at the top. dobj str (think “direct
object string”) is the string the user typed as the direct object in a command. If the
player typed exam ne rock then dobjstr will be “rock”. If the player typed
exam ne pet rock, then dobjstr will be “pet rock” and so on. The next few lines
are building a construct to return as aresult. We start with an empty list. Then there
is afor loop that does something with every item of . obvi ous_ver bs. What does it
do? It does a substitution of dobj str, and appends the new result to the existing
list. For the use of the @sign in this context, | refer you to hel p | i st append. For
the rest, parentheses, brackets, and braces nest. It's just a fancy call to afancy verb,
$string_utils:substitute, which hasitsown help text. If you want to, you can
take this one at face value, and model subsequent : exam ne_ver bs on other objects
after this one. Mimicking is a tried and true technique that gets you into hot water
sometimes but often works. 1’m not above doing it myself when I’m trying to learn
how to do something: Mimic something similar, and in the process of getting it to
do exactly what | want, | learn how it actually works. Last, notice the return

statement: Because of the curly braces{}, it's returning a list of things, which the
calling verb is expecting.

Programming can be wild and woolly, sometimes, but that’s part of the fun.

What Can’t You Do With a Rock?

Well, you can throw a rock. Throwing rocks isn't very nice. You can, if you
wish, prevent people from throwing your rock.

In this case, it's less about programming (more of that later), and more about

controlling your environment and the things you own, so let’s learn to exercise a bit
more of that control.

In MOQOs, throwing and dropping are more or less considered synonymous. But
it doesn’t have to stay that way. Exami ne rock. You will see, among other obvious

120 Programming

mailto:@vrbs};

verbs, d*rop/ t h*row rock. Initial concept: We want dropping the rock to behave
normally, but throwing the rock to give the player a message, instead.

Type @messages rock. You will see all the _nsg properties defined on your
rock (and all of its object ancestors), including the messages that we added. Notice:

No throwing messages. Concept: Make a separate throw verb, and a set of throw
messages to go with it. Revision: Actually, they should be no_throw messages, or
perhaps, to blend in with what’ s already there, throw_failed messages. So:

@rop rock.throw failed nsg "Throwi ng rocks isn't nice, and
besi des, this rock likes you, so it stays nestled safely in
your hand." rc

@rop rock.othrow failed _nsg "9 %makes> a t hrowi ng notion
with %, but can't quite seemto bring % to let go." rc

@ddalias "throw failed _nsg" to rock:pet _nsg
@ddalias "othrow failed msg" to rock: pet_nsg

So far this should seem familiar. | often start with what | want the messages to
be, then verbs to control how, when, and to whom they’ Il be displayed:

@erb rock:throw this none none rxd

But wait! The verb name is “th*row”, and if we want to override it, we have to
name it exactly the same as the verb on its parent. If you went ahead and typed in
the line above, remove the verb with:

@nmverb rock:throw

To be absolutely sure of how to add it, we'll check with this:
@li spl ay rock:throw

We use @li spl ay rock: t hrowrather than exami ne rock because who knows
how the previous programmer may have gussied up the examine verbs, eh? Based on
what we see, then, we'll add the verb like this:

@erb rock:th*row this none none rxd

@r ogram rock: t hr ow

"Throwi ng stones isn't nice. Thwart that inpulse.”;
player:tell (this:throw failed nmsg());

pl ayer. | ocati on: announce(this:othrow failed nsg());

Well, on looking at it, that throw_failed msg is a bit patronizing, and
furthermore, unhelpful to someone who actually wants to rid emself of your rock. So
let’s adjust it:

@hrow failed rock is "Throwing rocks isn't nice. Try
dropping it, instead."

Test everything. Try throwing the rock. Try dropping the rock. Examine the
rock. Hmm. | found, in my play-testing, that you can’'t drop a rock if you aren't

Programming 121

holding it, but you can throw a rock (or try) if you aren’t holding it. We can do
better. Let’s start by looking at what the original code does:

@ist rock:drop

This will show us the original drop verb. It's pretty old code, and written in an
older style. You'll notice the difference between the way that verb handles messages
and the way ours do. Our verbs are new and improved. And you'll see some things
that you don’t understand, perhaps, which may or may not turn out to be relevant.
Get what you can out of it and don’'t worry about the rest, right now. What we're
looking for, though, is the part that generates the text, “Y ou don’'t have that,” so that
we can do ours in a similar, if not identical way. And what it does is check the
location of the rock, and display different messages depending on where it is. Our
verb will be simpler, but will behave in a similar way. I’m going to show you two
versions, and | hope you can tell by inspection (and maybe by consulting the
programmer’s manual) what the difference is. They are both equally good, so you
can choose which way you want to implement it.

Version 1:
@r ogram rock: t hr ow
"Throwi ng stones isn't nice. Thwart that inpulse.”;
if (this.location == player)
player:tell (this:throw failed nmsg());
pl ayer. | ocati on: announce(this:othrow failed nsg());

el se
"You can't throw a rock if you don't have it in the first
pl ace.";
player:tell ("You don't have that.");
endi f
Version 2:

@r ogram rock: t hrow
"Throwi ng stones isn't nice. Thwart that inpulse.";

if (this.location != player)

"You can't throw a rock if you don't have it in the first
pl ace.";

pl ayer:tell ("You don't have that.");
el se

"You have it, but you can't throwit....";

player:tell(this:throw failed_msg());

pl ayer. | ocati on: announce(this:othrow failed _nsg());
endi f

Here is a case where I’ ve chosen not to extract a message into a property, so let
metell you why. | put in a perhaps-superfluous comment, “Y ou can’'t throw arock if
you don’t have it in the first place,” mostly to set a good example. But in a case
where we're just telling the player some sort of error message, the embedded string

122 Programming

can serve as the comment. So a leaner but just-as-readable version might look like
this.

Version 3:

@r ogram rock: t hrow
"Throwi ng stones isn't nice. Thwart that inpulse.";
if (this.location != player)
pl ayer:tell ("You don't have that.");
el se
"You have it, but you can't throwit....";
player:tell(this:throw failed_msg());
pl ayer. | ocati on: announce(this:othrow failed _nsg());
endi f

Expediency is fing, if it isn't cryptic. If you have to squint to follow what the
code isdoing, add acomment. You'll be glad later that you did. Trust me.

Before we move on, | want to take a quick moment to point something out in
Version 1. Noticetheline,if (this.location == player). Noticeespecialy the
double-equals sign “==". There is a very big difference between a single equals sign
and a double equals sign. The first is an assignment statement. a = b means, “Set
the variable a equal to the current value of the variable b.” a == b means, “Is the
current value of a equal to the current value of b?" These are two very different
things. Confusing thetwo is a classic mistake. Heads up.

Here' s another way to control your rock and what people do with it.

Suppose you want to lock your rock in place, so that people can’t take it. Maybe
it's aboulder!

drop rock
@ock rock with here
t ake rock

Heh, you can’'t pick that up, and neither can anybody else. You might change
your rock’s description to show that it's a boulder. Or you might just change
take failed msg and otake failed msg to say something like, “It's heavier than it
looks, isn't it!”

If you decided to make your rock portable again, type:
@nl ock rock

Seealsohel p @ ock and hel p | ocki ng.

Rockin’ and Roallin’

So far, we've done a variety of things with our rock, but the rock itself hasn’t
changed, much. Hardly surprising, | suppose, but the phrase comes to mind, “A

Programming 123

mailto:@lock

rolling stone gathers no moss,” and | was thinking, wouldn’t it be fun if our rock
gathered moss?

How shall we start thinking about this? Well, what if the description had a bit
tacked onto the end saying how mossy the rock is? The amount of moss can depend
on how long since the rock was last moved.

So. We'll need alist of different amounts of moss. We'll need to write a verb to
make the description change over time. We'll need away to see how long it has been
since the rock was last moved, and we'll need a way to convert that amount of time
into a phrase about moss.

Let’s start with the easy part to get our juices going:
@roperty rock.noss_list {} rc

It’s going to be alist of text strings, and {} isthe symbol for the empty list. We
start with that. Then:

@dit rock.noss_|ist

ent er

It has gathered no noss.

If you were to look at it closely with a magni fying gl ass,
you woul d see a tiny bit of nobss on it.

There is just a wee bit of npbss growing on it.
It has gathered a little bit of npss.

There is sone nbss growing on it.

It is about half-covered with noss.

It has gathered quite a bit of noss.

It has gathered a great deal of npss.

is al nost conpletely covered with nopss.

is covered with noss.

save
done
Time on MOQOs is measured in seconds since midnight on 1 January 1970,
Greenwich Mean Time. How do | remember that? | don't. It'sin help tine(),
which we will be using.

@rop rock.last_noved tinme O r

It'sr (and not rc) because we'll be changing it from within our verb (only).
Every time the rock moves, we'll record the time. Every time someone looks at the

rock, we'll compare the current time to the. | ast _noved_tine. Any time an item
moves or is moved, its: novet o verb is called. We want to take advantage of this by
adding a bit to the existing : novet o verb, and we do it like this:

@erb rock: noveto tnt rxd

t nt isan abbreviation fort hi s none thi s, our designation for an internal verb.

@r ogram rock: novet o
"Reset the reference tinme (clearing off any npss)";

124 Programming

this.last_noved_ time = tinme();
"Then do all the usual stuff that the parent does.";
return pass(@args);

Can we test out this much? You bet. Drop the rock (if you have it) or take the
rock (if you don’'t). You can manually inspect the .last_moved_time property this
way:

#rock. |l ast_noved_tinme

(Seedsohel p #.) Moveit again, then check . | ast _noved_ti ne again. It changed,
by about the number of seconds between moves. Don’t be daunted by that great big

number. There are plenty of verbs to help us make sense of it. (See help
$tine_util s if you recuriousright now.)

We don’t care what the number means. It’s the difference between ti ne() and

rock. | ast _noved_ti me —the number of seconds that have elapsed since it was last
moved — that interests us. Next we have to pick an interval (measured in seconds)

during which a new amount of moss grows. Maybe a day, or a week, but who wants
to wait that long to test it? We'll start with, say, a minute, then change the number
later after we' ve tested it:

@rop rock.nmoss_interval 60 rc

The next bit is rather a lot of complexity all at once, but try to stay with me,
here.

First, let’s look at some of those moss descriptions one at atime, to get a feel for
them. You'll need to know your rock’s object number for this. If you've forgotten it,

type #rock. Mine is #70217, so I'll type that here, but you should use your own
rock’s object number. (Angle brackets are just too cumbersome for this

demonstration.) We're going to play with eval abit. eval lets you evaluate a tiny
bit of MOO-code on the fly, as it were, without having to write an entire verb to do it.

and ; are abbreviationsforeval . It’sextremely useful! Try some of these:
#70217. moss_| i st
#70217. moss_list[1]
#70217. moss_list[5]
#70217. moss_|ist[0]
#70217. moss_| i st[30]

Oho, if we give it too high or too low a number, we get an error. We'll want to
keep thisin mind when we write our verb. Here are some more examples of eval :
;1 engt h(#70217. noss_|i st)

; #70217. noss_list[l ength(#70217. noss_|ist)]
; #70217. noss_| i st[9]

;ctime()

;ctime(#70217.1 ast_noved_ti nme)
;time() - #70217.1ast_noved_tine

Programming 125

mailto:@args

;(time() - #70217.1 ast_noved_tinme) /
#70217. nmoss_i nt erval

If your moss interval is 60, like mine, the last one will show you how many
minutes since the rock was last moved.

Now we're going to add a : descri pti on verb to the rock, which we will then
customize. When you look a a thing, the system executes that thing's
:description verb. For most things, all the verb does is return the value of the
.descri pti on property, very like our message verbs were doing before we got fancy
with pronoun substitutions. It's not unusual for objects to have customized
: descri ption verbs:

@erb rock:description tnt rxd

@r ogram rock: description
"Start with the original description, then add to it.";
"Some noss, perhaps.";
base _description = pass(@rgs);
"What time is it now?";
now = tinme();
"How |l ong has it been since it was |ast noved?";
how_| ong = now - this.|last_noved_tine;
"How many .nmoss_intervals is that?";
i ndex = how long / this.nmpss_interval;
"If it has been a very short time, index will be 0, but I|ist
el ements always start at 1 in MXO code, so we'll add 1.";
i ndex = index + 1;
if (index > length(this.noss list))
"It has been so long, index is too high.";
"So just use the last one.";

i ndex = length(this.noss_list);
endi f
return (base description + " " +

this.noss _list[index]);

Test your work. Isn't this fun? If you don't like waiting an entire minute each

time, set your rock’s . nmoss_i nt erval to something smaller, like 10 or 15. Then
when you’'re satisfied, set it to something longer. How many secondsin aday? Ina
week? In amonth? Find out like this:

"One hour

;60 * 60

"A day

;60 * 60 * 24

"A week

;60 * 60 * 24 * 7
"And so on.

126 Programming

mailto:@args

And now, a stationary stone gathers moss.

Looking Under Various (Other) Rocks

Learning a new language is always a challenge, and a programming language is
no different. It’s nice, as an adult, to attend a language class and have a professor or
instructor take you through the material in alogical sequence, so that first you learn
to express simple things, then more complex things, until you get a sufficient
understanding of the grammar and a sufficiently large vocabulary that you can start
to express your own ideas independently. Children learn languages, on the other
hand, by being immersed, by imitating those around them, by trying things and
seeing which utterances get results and which get perplexed looks from their elders. |
don’t think anyone learns a language by reading a dictionary.

The Programmer’ s Manual is a good reference book, but there are other tools that
will help you explore the MOO around you and learn (by example) from what’s out
there already. | am going to detail some of those tools now.

Suppose you want to investigate an object to find out what makes it tick. First, (I
hope) you would exani ne the object and perhaps play with it a bit.

Then you might type hel p <obj ect >, to see what the owner or creator wants

you to know about it. Then, perhaps, @ar ents <obj ect > to get a handle on what
sort of object itis. You'll get alist of object numbers and names, and it may (or may

not) be fruitful to check the help text on the object’ s ancestors, as well.

Then, perhaps, you'd like to know whether this object has any special
programming of its own that makes it different from its ancestors. This is where the
@i spl ay verb comesin. It's one of my favorites. There's extensive help text on it,
but the form of @li spl ay that | use most often is @li spl ay <obj ect>.: which
gives a list of verbs and properties defined on that object. (Note that if none are
defined, however, you may see the verbs and properties defined on its immediate
parent, instead. You can fix that by typing @li spl ay- opti ons +t hi sonly.) Often
you can get a good start on understanding an object just by looking at the names of
the verbs and properties defined on it. Trick: If an object is set as a whole to be
unreadable, but some or all of its verbsare readable, you can get a handle on those by
typing @er bs <obj ect > instead of using @li spl ay. (Seealso @how <obj ect >.)

If a particular verb catches my eye, | might list it, using the command @i st
<obj ect >: <ver bnane>, just to see what'sin there.

Another thing | might do is type @essages <obj ect > to get a sense of the
scope of its output. If there are messages that | haven't found yet in the course of my
playing, then | know that the programming on the object is richer than first meets
the eye, and that it might well be worth exploring the object further.

Some people like to use either @unp <obj ect> or @unp <object> wth
creat e to get a complete listing of everything on it. Asarule, | don't care for the
large quantity of text that @unp generates, but some people like to print out

Programming 127

everything there is to know about an object, send it to a printing device, and read the
hard copy at leisure. If that’s your cup of tea, by all means do that.

Suppose you see a line of text, that you know to be from a particular object, and
you want to home in on it to see what verb generates it, and what’s going on in the
vicinity (if you will) of the line of text that has caught your interest. For example,
“Yib tries to feed the rock. Nothing happens. Natch!” The @r ep command can be
helpful here. (Note, @r ep requires an object number, not the name of an object,
even if you arein proximity.)

@rep "Natch!" in <object>

Searching for verbs in <object> containing the string
"Nat ch! "

Total : O verbs.

Well, in this case we struck out. But if you typed @ressages rock and found
that the phrase, “Natch!” was part of the . of eed_nsg property, then you could type:

@rep "of eed_nsg" in <object>
and you would see:

Searching for verbs in #<object> containing the string
"of eed_nsg"

<obj ect>:feed [<verb owner>]:
pl ayer. | ocati on: announce(this: of eed nsg());

Total: 1 verbs.

So in this case you would have learned that of eed_nsg (which contains the
string we're interested in) is used in the : f eed verb, so then you might list that verb
out to see the larger context.

Last, suppose you are MOOing along, minding your own business (more or less),
and out of the blue you see the text, “A black magpie flies in and looks greedily at
bright sparkly thing.” (You happen to have dropped said sparkly thing recently.)
Suppose you made that sparkly thing yourself, and know for sure that there is
nothing in its verbs or properties that refers to a black magpie. Where did this line of
text come from? What's going on here? You can type @heck-full <text> and
get a trace of the verbs that were called in the process of delivering this choice tidbit
of text to your baby blue eyes:

128 Programming

@heck-full nagpie

Traceback for:
A black magpie flies in and | ooks greedily at bright sparkly thing.

Thi s Ver b Per m ssi ons Ver bLocat i on Pl ayer

#58337(Y) tell (1) #67(Ri ncewi nd) #7069(generic) #5720(bl ue)
#58337(Y) tell (29) #3920(Jay) #33337(PC O as #5720(bl ue)
#58337(Y) tell (4) #57140(SSO) #40099(SSSPC) #5720(bl ue)
#58337(Y) tell (1) #58337(Y) #58337(Y) #5720(bl ue)
#6193(Dri veway announce_al | (3) #2(wi z) #3(generic roo #5720(bl ue)

#6193(Dri veway announce_al | (3) #24442(rw3) #17755(1 ntegra #5720(bl ue)
#77522(magpi €) make_t he_rounds(27 #61050(Y_A) #77522(magpi e) #5720(bl ue)
#77522(magpi e) wake_up(19) #61050(Y_A) #77522(magpi e) #5720(bl ue)

Well, in this example, you can find out the object number of the magpie, the
names of a couple of verbs on the magpie that might be worth looking into, and then
you're off and running. Heads up: If you are doing this on LambdaM OO and have

the Lag Reduction FO of Godlike Powers, you will have to type @ddl ag and
@ar anoid <nunber> in order to get anything useful from @heck-full.

<nunber > in the @ar anoi d command refers to a number of lines to keep tracebacks
for. Thereishelp text for all of these functions.

Read lots and lots of verbs. Even if you don’t understand everything in them,
you will gain exposure, start to pick up on patterns, and, as you are ready, absorb new
concepts and learn new tricks. Leave no stone unturned.

Asking Othersfor Help

It is very important that you give a problem the old college try before asking
others for help, for a couple of reasons.

First, it's inconsiderate to ask someone else to put more time and work into
investigating a bug of yours than you are willing to do yourself.

Second, the very act of trying everything you can think of and checking every
reference you know about makes you more receptive to and able to understand the

answer when you finally get it.
Before asking for help:

» Read any tracebacks and look at the verb/lines that seem to be causing a problem.

* Read any compiler errors and look at the verb/lines that seem to be causing a
problem.

« Seeif you can find any online help text that addresses your difficulties. (Don’t
forget hel p i ndex.)
* Seeif thereis any other documentation relevant to your project.

When you ask for help, put together a summary of the problem:

Programming 129

* Include abrief description, and a copy of atraceback (if any).
» Describein detail how to duplicate the problem.
* Include object numbers -- don't just say, “My pet rock doesn’t work.”

* Indicate what you’ve tried so far, both to show that you have tried, and to save
your helper the trouble of trying things that you’ ve already checked.

DO ask for help if you're genuinely stuck. Most people are happy to assist (or at
least try) if you ask nicely and demonstrate respect for their time.

Islt Covered With Moss, Yet? (A Small Side Project)

While my rock was gathering moss, | was wanting to check it each and every
.moss _interval, just for the fun of reading all the messages. But | felt silly typing
| ook rock over and over again, waiting to see whether it had changed yet. So |
thought, “I wish | had atimer, so | could set it and forget it, and be reminded when it
was time to look at the rock again.”

Let’s make one.

Concept: Thiswill not be acomplicated object to use. All we need isaverb, set
timer for <sone duration>. One verb ought to do it. We'll get more practice
using $tinme_utils:

@reate $thing named tiner
@lescribe tiner as "A sinple tiner, such as you nmight find
in the kitchen."

Now we'll start with a prototype, to see if we can make it work at all, then refine
it and make it more robust. With programming (as with many kinds of projects) the
trick is, “Divide and Conquer.” If atask seems too big and overwhelming, divide it
into subtasks. If those are till too complicated, divide those further. 1I’m going to
show you many versions of one verb, to demonstrate that these programs don’t
emerge full blown from my head. After years and years of programming, | still work
simple-to-complex. Here we go.

First, | typed @li splay $tinme_utils: (note the colon), which gives me alist

of all the verbs on that particular utility package. | have something in mind that I'm
looking for, and that just comes with experience and lots of exploring. You could
aso type help S$tine utils. Aha, here is what I'm looking for,
$time_utils:parse english_tinme_interval. This will let me take input like,
“1 minute’” and turn it into a number of seconds. Let’stry out just that much:

@erb tiner:set this for any rxd

@rogramtiner:set
duration =
$time_utils:parse_english_tinme_interval (iobjstr);

130 Programming

pl ayer:tell (tostr(duration));

| created the verb, and then put the bare minimum of programming on it.
| obj str isthe string that someone types in as the indirect object, and, since it can
be anything (it will be a duration, in English words), | gave this for any as the
arguments. In the program | set up a variable called dur ati on, which stores the
output from one of the $tinme_utils verbs. My only goa at the moment is to
satisfy myself that | can take a string like “10 seconds” and get a number 10 out of it.
The second line of the verb is a simple output line, to player (that's me, the
developer) to see if | did, in fact, get something intelligible. Note the
tostr(duration). durationisanumber. player:tell takesastring. tostr()
turns a number into a string. So I’'ve turned the number into a string (inner set of
parentheses), then I’'m telling that string to pl ayer (me):

set tiner for 10 seconds
10

Success! But let’ s test further:

set tinmer for 10

I ncorrect number of arguments
set tiner for Fred

I ncorrect nunmber of argunents

Hmm. | want to know if $time_utils:parse_english_time_interval is sending back
the STRING “Incorrect number of arguments’, in which case | can work with it, or
whether the system is giving me this message, in which case I'll have to scratch my
head considerably more. 1I’'m going to adjust my verb to answer this question:

@rogramti ner: set
duration = $tine_utils:parse_english_time_interval (iobjstr);
player:tell ("Result: " + tostr(duration));

All I’'ve done is insert the word “Result: 7, before the result 1 get back from
$time_utils. If I’'m getting the string back from the utility, then I'll see the word,
“Result: " at the beginning. If I’m getting the message from the system, then | won't:

set tinmer for 10

Resul t: Incorrect number of arguments
set tiner for Fred

Result: Incorrect number of arguments

Yay! The message is coming from $time_utils, so I'll be able to snag it easily and
deal with it gracefully. (In fact, there are ways to intercept system error messages,
too. Seethe note for the ERR datatype on page 158).

@rogramtiner:set
duration =

$time_utils:parse_english_tinme_interval (iobjstr);
i f (typeof(duration) == NUM

Programming 131

"W got a good value for duration.";
pl ayer:tell (tostr(duration));
el se
player:tell ($string_utils:pronoun_sub(
"Try sonething like "set % for 3 minutes'."));
endi f

This verson of the verb tests to see whether the result returned by
$time_utils:parse_english_time_interval was a number or not. |If it's a
number, then we got good input. If we didn’t get a number back, then we'll give the
player a polite and instructive error message. Thet ypeof () built-in function is what

| use to find out what sort of thing I’'m working with. Seehel p typeof (). Atthis
stage, | choose not to extract that error message into its own verb, so | do the

pronoun substitution on the fly. With more than a handful of lines, it’s also time to
put help text at the top of the verb, so I'll be sure to do that in the next round. Test
the code as before. When you' ve dlicited every message for every contingency you've
accounted for, then you’' ve done enough.

Now it’ s time to make the timer actually do its thing (drum roll, please):
@rogramtimer: set

"Usage: set <this> for <duration>";
"Exanple: set tinmer for 1 hour";
duration =

$time_utils:parse_english_tinme_interval (iobjstr);
i f (typeof(duration) == NUM
"W got a good value for duration.";
fork (duration)
player:tell ("Ding!");
endf or k
player:tell ("The tinmer starts ticking.");
el se
player:tell ($string_utils:pronoun_sub(
"Try sonething like "set % for 3 minutes'."));
endi f

Y ou should be able to follow most of this. The only new items are those f or k

and endf or k statements. When you set a timer, you set it down and go off and do
something else, while the timer does its thing independently. And that’s what's

going on here. Everything between the lines, fork. ... endf ork will be done at a
later time. How much later? The number of seconds that we give to fork as an
argument, in this case, duration. Anything after the endf or k statement gets done

right away. Try this out, now. Use aduration likel m nute. An hour is probably
longer than you want to wait.

You can check on background tasks (as these are called) with the @ or ked
command. See help @orked and aso help @ill. Forked tasks hog system

132 Programming

mailto:@forked
mailto:@kill

resources, and should only be used in moderation. If you work on a MOO that has a
task scheduler, you should make a point of learning to use it (when you feel ready).

Well. When | tried it, it worked, but the “Ding!” got lost in some other text |
was displaying on the screen at the time. So on the next round, I’'m going to indent
it, among other things. The only thing new is that I’'m going to make the output
prettier. Pretty output is more important than you might think. What | want is,
“Ding! 10 seconds are up”, indented so that I’ll notice it more. | also want it to
differentiate between “ 60 seconds are up”, and “1 minuteis up”:

@rogramtiner:set
"Usage: set <this> for <duration>";
"Exanple: set tiner for 1 hour";
duration = $tine_utils:parse_english_time_interval (iobjstr);
i f (typeof(duration) == NUM
"W got a good value for duration.";
fork (duration)
"I ndent the nessage, for better visibility.";
"Add text to indicate how nmuch tine has el apsed.”;

be = ((iobjstr[$] == "s") ? "are" | "is");
nmessage = iobjstr + " " + be + " up.";
nessage = $string utils:capitalize(nessage);
player:tell (" Ding! " + nessage);
endf or k
player:tell ("The timer starts ticking.");
el se

player:tell ($string_utils:pronoun_sub(
"Try sonething like "set % for 3 minutes'."));

endi f

The new material is within the fork/endfork statement. | construct a message
using smaller strings and the “+” sign to concatenate them together. Here's the
mystery line:

be = ((iobjstr[$] == "s") ? "are" | "is");
Hereit isin pseudo-code:

if (the last letter of iobjstr is "s")
set the variable 'be' to the string "are

el se
set the variable "be' to the string "is"
endi f
Divide and conquer. Working from the inner-most parentheses outwards:
lobj str is going to be something like, “10 minutes’, or “1 hour”. | want to know

whether the last character is an “s’. i obj str[5] means the fifth letter of iobjstr.
i obj str(length(iobjstr)) isthelast letter of i obj str. iobjstr[$] isaway to
abbreviate that. “$” in this context means “last”. Note the double “==" sign. If you
are assigning avalue to avariable, useone: x = 3. If you are testing for equality, use

Programming 133

two:if (x == 3)... Thesetwo different usages lend themselves to typographical

errors. Be sure to look for a mistake in the number of “=" signs when you are
debugging.

Now what about that question mark? Am | uncertain of what I’'m coding? No.

The paired symbols, “?” and “| ” are an abbreviated way to do a simplei f...then
statement:

result = (x ? a| b);
is the short way of writing:
if (x)

result = a;
el se
result = b;
endi f
“x" can be an arbitrarily complicated expression.
So:
be = ((iobjstr[$] == "s") ? "are" | "is"),

sets up a variable, be to be either the string "are" or the string "i s" depending on
whether i obj str endsin theletter"s" or not.

If you've played around with your timer, you may have noticed that you can set
it more than once. It’'s actually a multiple timer. We could call this a bug, and add
code to see if the timer is ticking, and, if it is, tell the player that it’s currently in use.
Or we could call this a feature, and add code (and documentation!) to take advantage
of the fact. | choose the latter.

Good Times

We have atimer, and it times things. It dings when the time is up, and we can
set it more than once -- it's a multiple timer. Being the forgetful sort, now | would

like to be able to type in an optional reminder message, so that when the timer dings,
I"ll know what it was | had set it for.

@rogramti ner: set
"Usage: set <this> for <duration>";
"Exanple: set tiner for 1 hour";
duration = $tine_utils:parse_english_tine_interval (iobjstr);
i f (typeof(duration) == NUM
"We got a good value for duration.”;
"Ask for an optional rem nder nessage.";
nessage = $command_utils:read("an optional rem nder

nmessage");
if (!nessage)
be = (iobjstr[$] == "s" ? "are" | "is");
message = iobjstr + " " + be + " up.";

134 Programming

nmessage = Ding! " +
$string_ utils:capitalize(nessage);
endi f
fork (duration)
pl ayer:tell (nessage);
endf or k
player:tell ("The timer starts ticking.");
el se
pl ayer:tell ($string_utils: pronoun_sub(
"Try sonething like "set % for 3 mnutes'."));
endi f

The new line hereis:

nessage = $comrand_utils:read("an optional rem nder
nmessage");

Oho! Another utilities Rackage, $command_uti | s. Check out its help text to see
what sorts of things are in this box of tools. Don’t worry about understanding it all;

just get acquainted a little bit, for future reference. We are going to read a line of
input from the user (pl ayer), and store its value in the variable nessage. If the user
typed <ent er > without any text, then we'll just build the message as before.

Notice that | took some of the message building out of the fork...endfork
construct and did it all ahead of time. This is a matter of programming style, which
is hard to teach. My reason was, put all the message building code in one place,
before the fork statement. Then when the forked duration is up, just tell the player
the message. In a situation where | wouldn’t know what the message should be until
after the time had elapsed, it would be appropriate to construct or select message text
within the body of the fork/endfork block.

Edit or type in the new version, and try it out. Thisis not bad, but | missed the
Di ng! if I typed in amessage. So |I’'m going to adjust it so that the output is more to

my taste. The next changes aren’'t really substantive, so |I've just noted the changes
with comments in the code itself.

@rogramtimer: set
"Usage: set <this> for <duration>";
"Exanple: set tinmer for 1 hour";
duration = $tine_utils:parse_english_tinme_interval (iobjstr);
i f (typeof(duration) == NUM
"W got a good value for duration.";
"Ask for an optional rem nder nessage.";
nessage = $comrand_util s:read("an optional rem nder

nmessage") ;
if (!nessage)
be = (iobjstr[$] == "s" ? "are" | "is");
nessage = iobjstr + " " + be + " up.";
message =" Ding! " +

$string_utils:capitalize(nessage);

Programming 135

el se
"Add a Ding! because I can.";

nessage = Di ng! + nessage;
endi f
fork (duration)
pl ayer:tell (nessage);
endf ork
player:tell ("The timer starts ticking.");
el se

player:tell ($string_utils:pronoun_sub(
"Try sonething like "set % for 3 minutes'."));
endi f

This version does almost exactly what | want. The last step (before doing up the
examine verbs and the help text) is to take a step back and look at the code and see if
| can make it any better. | notice that | am prepending “Ding!” in two places, and
can consolidate that. Now that you understand what more of the code means, some
of the comments are superfluous, and I’'m going to take them out. That last el se
statement is pretty far from its matchi n%_i f statement, so I’'m going to add a
comment down there. And | found the Ding! message still not quite prominent

enough, so I’m going to use avariant on pl ayer:tel | to put it between blank lines.
Hereis my final version:

@rogramtimer: set
"Usage: set <this> for <duration>";
"Exanple: set tiner for 1 hour";
duration = $tine_utils:parse_english_tine_interval (iobjstr);
i f (typeof(duration) == NUM
"W got a good value for duration.";
nessage = $comrand_util s:read("an optional rem nder

nmessage");
if (!nessage)
be = (iobjstr[$] == "s" ? "are" | "is");
nessage = $string utils:capitalize(iobjstr + " " +
be + " up.");
endi f
message =" Ding! " + nessage;
fork (duration)
player:tell lines({"", nessage, ""});
endf or k
player:tell ("The timer starts ticking.");
el se

"Didn't get a good value for duration.";
player:tell ($string_utils:pronoun_sub(
"Try sonething like "set % for 3 minutes'."));
endi f

136 Programming

Last but not least, we'll add help text and examine verbs. We ve done this
before:

@rop timer.help_msg {} rc

@dit timer.hel p_nsg

enter

This is a sinple tiner. To use it, type 'set tiner for
<dur ation>'.

Here are a few exanpl es:

set tinmer for 3 mnutes
set tinmer for 45 seconds
set tinmer for an hour

The tiner will pronpt you for an optional rem nder message

You can tine nore than one thing at once. That is, you
don't have to wait until the first tinme is up before setting
the tiner for another thing. Reninder nessages are

especi ally hel pful when you are tinming several things

si mul t aneousl y.

save
done

@rop timer.obvious_verbs {} rc

@dit tinmer.obvious verbs
ent er
set %what> for <duration>
gi ve/ hand %what > t 0 <anyone>
get/take %what >
dr op/ t hr ow %what >
hel p %what >

save
done

@erb tinmer:exani ne_verbs tnt rxd

@rogram tiner: exan ne_ver bs
what = dobj str;
vrbs = {};
for vrb in (this.obvious_verbs)
vrbs = {@rbs, $string_utils:substitute(vrb, {{"%what>"
what}})};

Programming 137

endf or
return {"Cbvious verbs:", @rbs};

Vaild, a finished product that does something useful! As you can see, objects
and verbs evolve, from gleams in their creators eyes to simple proof-of-concept
prototypes, to fancy versions with whistles and bells, to finished products with nice
exam verbs and help text.

What’ s Big and Red and Eats Rocks?

When | first started planning this tutorial, | wanted to make a small pet.
Something that one could interact with, something that could respond in a limited
way to things happening around it, something that would seem to take on “a life of
its own”, which is part of the true magic of programming on aMOO. So for our final
project, we' re going to make a big red rock eater.

First, the brainstorming. Petting the big red rock eater should generate more
interesting results than petting a rock. There should be a command of the form,
feed <anything> to Red. Hmm. What should happen to things that get fed to

Red? Should they disappear? Should we make a special place called “RedBel | y”?
Should it be possible to feed a player to Red? That might be an interesting experience,

but not all players are gracious about being moved. If it eats, then it would be nice to
have a good VR way to get things back or have them re-appear. Should it excrete?
Maybe it could go hunting and find some sort of treasure, like a cat finding a mouse.
Or maybe it could be like a cartoon character and reach into its own innards and
produce a previously-eaten object. I'll have to think about that one. Should it talk?
How about if it had variable color spots? | want it to have a gender, so we'll make it a
kid of the generic gendered object. If it only eats rocks, then I'll need a way of
deciding whether a thing is arock. Or maybe it eats anything, but is especially fond
of rocks. How about a verb to tickle the rock eater? Nah. It wouldn't effect any
change in state, and emote works just aswell. So let’s pass on that one. (| know, the
same could be said of the :pet and :feed verbs on the pet rock, but those were
instructional exercises.) Maybe it would eat rocks in the vicinity spontaneously. Or
maybe not. It should have a repertoire of spontaneous actions, things that it “just
does’ from time to time. | know what cats do, but will have to think of particulars
for rock eaters. Still, the concept is good. Maybe it’s like a Tamagotchi™, and if you
don’t take good enough care of it, it dies! Or maybe if it gets hungry enough, it eats
its owner and the owner gets booted! (Fun thoughts, but maybe that’s taking things
a bit too far.) Maybe, though, its description could change depending on how
hungry it is-- like the rock gathering moss. That would be a good compromise.

That's how | typically start a project. | write down everything | can possibly
think of, adding to the list over the course of several days (sometimes weeks, or even
months). | consider possibilities, no matter how far-out, and pose myself problems.
Some things | already know how to do, because I’ ve done the same or similar things
before. Others| may have to research.

138 Programming

mailto:@vrbs};

The next step, then, is to create an object and start fleshing it out, making it
more complex as | go aong:

@reate $thing naned "a big red rock eater", "big red rock
eater", "red rock eater", "rock eater", "eater", "brre",
n Redll

| decided at the last minute to name mine “Red”. Feel free to name yours
something else. Naming is actually hard, sometimes. You have to decide what you
want people to see when they enter a room (for example): "You see a big red
rock eater here,” or "You see Red here." | may yet change my mind and
rename him so that the name is Red, and "big red rock eater” apgears in the
description, instead. (The system ignores capitalization — so “red” and “Red” would
both refer to our big red rock eater — except that it preserves capitalization when
displaying text.)

@enanme big red rock eater to "Red"

or how about:

@enane red to "Red (a big red rock eater)", "a big red rock
eater", "red rock eater", "rock eater", "eater", "Red"

There are some other options that | may explore later, in particular a:title
verb, which usually but doesn’t always return an item’s name. | might want it to be

"Red (a big red rock eater)" sometimes, and sometimes just, " Red". I'll defer
that for now, but it’s an option to keep in mind.

@lescri be <your rock eater> as "<your idea of what a big red
rock eater |ooks |ike>"

Ahal Food will go where any other LambdaM OO food goes, that is, to its home
if it has a . horre property defined on it, otherwise to its owner’s home. Whew, I'm
glad to get that off my mind. (Creative development rarely follows a logical, linear
seguence.)

Now that I’ ve resolved the food issue to my satisfaction, let me show you a fun
(optional) thing you can do with the description, which will further enrich your
pronoun substitution skills. My rock eater is red, but he has spots, and | want the
spots to be a different color each time someone looks. For variety.

. Recall that we wrote a : descri pti on verb to enhance the pet rock’s description
with the addition of some moss. ur strategy here will be similar, with a custom

description verb. In that verb, we will determine the color of the rock eater’s spots.
But we'll refer to the color in the description itself. Stay with me, here:

@roperty red.color "blue" r

Notice, again, that the property isr and not rc. That's because | intend to
change it from within averb, later, and not from the command line.

Start simple, then get fancy. For now, he'll have blue spots. Then we'll work on
variable-colored spots. In my examples, I’'m going to give the rock eater a fairly
generic description, so as not to meddle with your own idea of the critter's
physiognomy:

Programming 139

@lescribe red as "You see a big red rock eater with
%tcolor] spots.”

@erb red: description this none this rxd

@rogram red: description
base_description = pass(@rgs);
return $string_utils: pronoun_sub(base_description);

Here's what's going on with the new fancy footwork. Look first at the

.description property. Recal that the “% sign is a specia symbol used by
$string_utils:pronoun_sub. The square brackets delimit a unit of text that
$string utils:pronoun_sub will work on. The initia “t” inside the square
brackets refers to t hi s, a special variable in MOOcode that means the object on
which the current verb is defined — here, the big red rock eater. The rest of what’sin
the square brackets is the name of a property on the object, in this case, col or,
which we just added. So in essence we're telling $string_util s: pronoun_sub to
substitute t hi s. col or for % tcol or], and it does. Take alook at your rock eater
now!

If my rock eater were always going to be red with blue spots, | would have just
written that into the description and not gone to all the trouble. But I’'m laying a
foundation.

Next, | want the color of the spots to change. I'll start with a list of colors to
choose from:

@rop red.color_list {} rc

@dit red.color_|ist
enter
bl ue
green
yel | ow
purpl e
or ange
br own
tan

bl ack
white

save
done

Make up your own list of colors. It can be any length. Now, in the description
verb, we're going to select one of these colors at random and put that color into the

property t hi s. col or. Then we'll do the substitution:

140 Programming

mailto:@args

@rogram red: description

base _description = pass(@rgs);

"Pick a random color for the spots."”;

this.color = this.color_list[random$)];

return $string_utils:pronoun_sub(base_description);

The only new thing hereist his. col or _list[random($)], and even that isn’t
completely new, because of our work with the . noss_I i st property on the pet rock.
Working from the inside out, then. “$”, when used inside the square brackets, refers
to the number of elements in the list. That's why it doesn’t matter how long your
.color_list is. If you add more colors later, or remove some, changing the length
of the list, the code will still work. random($) (again, when within square brackets)
gives a random number between 1 and the length of the list. So, this.color =
this.color_list[random($)] sets the property t hi s. col or equal to a random
element of thelistt his. col or_list.

o Here's my whiz-bang fancy version — see if you can figure out what’'s going on
ere:
@ nprop red. col or
@rop red.colorl "blue" r
@rop red.color2 "tan" r

@lescribe red as "You see a big red rock eater with
%tcolorl] and %tcolor2] spots.”

@rogram red: description

base description = pass(@rgs);

"Fancy version! Two *different* colors of spots!”
i ndex = random(l ength(this.color_list));
this.colorl = this.color_list[index];

this.color2 = (listdelete(this.color_list,

i ndex))[randon($)];

return $string_utils:pronoun_sub(base_description);

And so you see, unlike leopards, big red rock eaters can change their spots. And
hopefully you have at least a glimmer of how this technique could be adapted to
other situations. You could give your rock eater a variable number of heads, for
example.

Islt aBoy or aGirl?

Being a critter, let's suppose that it has a gender. This step isn't strictly
necessary, except that it alows me to use pronoun substitutions when typing in

Programming 141

mailto:@args
mailto:@args

template messages for you to copy, and will give you some additional practice with
pronouns as well. (Practice those pronoun substitutions!)

@hparent red to $gender ed_obj ect

What you get, by using this generic, is the verb for setting the gender, and a
bunch of properties that are used for the various pronouns. Now you can set its
gender, for example:

@ender red is male

Try typing:
@li spl ay red,
Note the comma, which means you want to display all inherited properties.

Pet the Nice Rock Eater ...

WEe'll put a: pet verb on the rock eater, but this time we'll get a more gratifying
response than we did from our rock. As always, we'll start ssmple and work up. Our

initial goal will be to set up the : pet verb, and add message properties and their
corresponding verbs:

@rop red. pet_nsg "You pet % ."
@rop red.opet_nsg "N Y%pets> % ."

@erb red: pet_nsg tnt rxd
@ddal i as opet_nsg to red: pet _nsg

@rogram red: pet _nsg
return $string_utils:pronoun_sub(this.(verb));

@erb red: pet this none none rxd

@r ogram red: pet
player:tell (this:pet_nmsg());
pl ayer. | ocati on: announce(t his: opet _nsg());

This level of programming is so fundamental that | can amost type it in
wholesale and have it work on the first try. (Though not quite -- | had asmall typo in
one of the verbs, and had to go back and fix it. Always test everything.) | usually set

up the messages first, then the verb to do the pronoun substitution, then the verb
that uses the messages.

So far, so good. But unlike a rock, a rock eater ought to react. So lets liven
things up some. Her€'s a design decision: When it reacts, will the player and others
in the room see the same thing, or different things? If | pet the rock eater, should |
see, “The rock eater looks at you adoringly”, and others see, “The rock eater looks at

142 Programming

Yib adoringly”? Or isit okay if everyone (including me) sees, “The rock eater looks at
Yib adoringly”? The second choice is easier. In the spirit of starting easy and getting
fancy, we'll do that. If the results aren’t satisfying, we can gussy things up some
more, later.

But now | have adilemma. My short-range plan is to add a message such as, “%
thunps his tail happily.” Butmylong-range planisto have an optional list of
possible responses, and maybe | could use that list for more than one thing (after he’'s
fed, for example). | want to name the message property in a way that is specific
enough to be instructive to someone reading the code later, but general enough that |
don’'t have to limit myself to the : pet verb. | think I'm going to make it a happy
response, and later, if the occasion arises, | can add unhappy responses and/or neutral
responses.

@rop red. happy_response_nsg "% | ooks at 9% adoringly." rc
@ddal i as "happy_response_nsg" to red: pet_nsg

@pr ogram r ed: pet

pl ayer:tell (this:pet_msg());

pl ayer. | ocati on: announce(this: opet_nsg());

pl ayer. | ocation: announce_al | (this: happy_response_nsg());

Test this. Notice the call to pl ayer. | ocati on: announce_al | . There are three
forms of the : announce verb on the generic room. :announce announces text to
everyone except the player who typed the command. : announce_al | announces
text to everyone, Including the player who typed the command.

cannounce_al | _but takes an additional argument that specifies a list of objects not
to see the text. We'll use the third form later.

Now to diversify. Just as I've typed in a list of colors, | want to have a list of
happy responses, and | want the message to select one of them. And, for
compactness, | want to do it in the same message verb that I’'m already using.

Here is the strategy: The : pet _nmsg verb is going to fetch t hi s. (verb), i.e. its
corresponding message. If it's a quoted string (that’s all we have, so far), then just do
a pronoun substitution on that string. If it'salist (of strings), then select one of them
at random, and then do the pronoun substitution:

@rogram red: pet _nsg
"If it's alist, pick one at random";
"Then do the pronoun substitution.";
nmsg = this.(verb);
if (typeof(nsg) == LIST)
nmeg = nsg[random($)];
endi f
return $string_utils: pronoun_sub(nsg);

First, we'll test it to make sure all the old messages work fine. (Do that now.)

Programming 143

Then, edit red.happy_response_msg to be alist of strings:

@dit red. happy_response_nsg

ent er

9% thunps %tpp] tail happily.

% makes a runbling noise in %tpp] throat, reniniscent of a
cat's purring.

9% sighs contentedly.

% does a happy little dance.

save
done

As with % tcolor], $string_utils.pronoun_sub transates %t pp] into
t hi s. pp, which is agendered object’ s possessive pronoun.

Now, pet the nice rock eater to make sure that you get an appropriate variety of
responses.

It Eats Rocks... Right?

We want to be able to feed rocks (and maybe other things) to the big red rock
eater. Design decision: Shall it eat only rocks, or shall it eat anything, but especially
like rocks? | choose to go for diversity on this one, so that you can feed the rock eater
without having to hunt around for arock. But either way, we'll need a strategy to tell
whether an item is a rock or not, and there are some pitfalls there. Another design
decision: Shall the rock eater eat players, or shall it be a domesticated rock eater that
doesn’'t eat players? If it eats players, what happens to them then? | choose to
sidestep that concern, and make a rock eater that eats rocks and other things, but
doesn’'t eat players. (If | were going to have it eat players, I’d probably create a room
that was the rock eater’ s tummy and move players there, where perhaps an adventure
of some sort would await them. As always, | would start with something simple and
make it progressively more complex.)

The syntax of the command will be, feed <anything> to <rock eater>.
When the rock eater eats something, it will be moved to the rock eater itself. After a

while, the food item will quietly go back to its home, or, if it doesn’t have a home, to
its owner’s home. We have to account for the possibility that an item can’t be moved
to the rock eater (maybe its owner locked it down, for example), so we'll have
messages to handle that case, and we have to account for someone trying to feed a
player to the rock eater, and provide a suitable failure message. Accounting for every
kind of misuse you can possibly think of is what makes for good, robust
programming. We will have many opportunities to practice our pronoun
substitution.

First, I'm going to tackle some behind-the-scenes stuff, in particular, filtering
what things the rock eater can eat.

Baseline check — Do you still have your pet rock handy?
@move rock to red

144 Programming

Y ou should get a message to the effect that either your rock doesn’t want to go,
or the big red rock eater didn’t accept it.

@erb red: acceptable tnt rxd

@rogram red: accept abl e
"This verb returns a truth value if an item may be noved to
the rock eater, and 0 if an item may not be noved to the
rock eater.";
{itent = args;
if (is_player(item)
"No players!";
result = 0;
el se
result = 1;
endi f
return result;

{item} = args; Thisis a special kind of assignment statement. This verb
won't be called from the command line. But it needs to receive some information
(called arguments) so that it knows what is under consideration for acceptance. The
built-in variable ar gs is a list of arguments. We only expect one argument to this
particular verb. The form {iten} = args, isthe preferred way of writing, i tem =

args[1l]. This is an idiom of the language; it's detailed in section 4.1.9 of the
programmer’s manual.

Here' s one of my philosophies of writing code: Nobody writes bug-free code. All
code will be maintained sooner or later. Even the person who writes the code
sometimes forgets what e was thinking when e wrote it. It is better to write longer
code that is easy to understand than to write compact code thet is cryptic. If and
only if you can compact the code without undue sacrifice of clarity, then more
compact code is better.

Now, a shorter, more compact version:

@rogram red: accept abl e

"This verb returns a truth value if an item may be noved to
the rock eater, and 0 if an item may not be noved to the
rock eater.";

"Players aren't accepted.";

{iten} = args;

result = (is_player(item ? 0| 1);

return result;

And a shorter version still:

@rogram red: accept abl e
"This verb returns a truth value if an item may be noved to
the rock eater, and 0 if an item may not be noved to the

Programming 145

rock eater.";

"Players aren't accepted.";
{itent = args;

return (is_player(item ? 0| 1);

Now try teleporting your rock to the rock eater. This should work. If you look at
Red, you shouldn’t see the rock, which is fine, since tummies are (usually) opaque.
But istherock really in there? Type:

@ontents red

to see. Thiswill aso remind you of the object number of your rock, in case you want
to teleport it back out again.

If you wanted to make a rock-shaped bulge in its tummy (say), you might alter
its :description verb and/or add a verb called :tell _contents, which is what

containers and rooms do. Y ou would check the value of its. cont ent s property and
go from there. (The details are left as an exercise for the intrepid new programmer.)

Now, to the business of seeing to it that stomach contents get returned
eventually.

Theverb : accept abl e is expected to return a truthful, silent answer, yes or no,
to the question, “Will object A accept object B?' The verb : accept does the actual
business of accepting (or rgjecting), and may do any associated processing. For
example, if you have ever tried to join someone who was in alocked room, you got a
message saying that either you didn't want to go, or the room didn't accept you.
That's done by the : accept verb. The : accept verb on the big red rock eater is
going to fork a task to move the incoming item back to some appropriate place at a
later time (if the item is acceptable). If the item is not acceptable (if it’s a player, for
example), then the: accept verb will just return avalue of O.

I had to tinker with the :accept verb quite a lot before it worked to my
satisfaction, so I'll spare you the play-by-play development process. Don’'t worry if
you don’t understand every detail, but do try to follow along. Later you might want

to write a custom : accept verb on some other object, and you'll know to revisit this
example for a deeper understanding of it.

@rop red. digestion_duration 30 rc
This is the duration (in seconds) that a thing will stay in Red’s tummy. While

I'm testing, I'll set it to something short, like 30 seconds. When I'm satisfied that
everything works, I'll change it to something like an hour, maybe.

@rop red.return_item home_nsg "The housekeeper arrives and

drops off %titem." rc

@rop red.item"This will be set to itemnanme by the :accept

verb." r

@ddalias "return_item hone_nsg" to red: pet_nsg

@erb red: accept tnt rxd

146 Programming

@r ogram red: accept
"Hold an item (while digesting), then try to send it hone.";
{itent = args;
if (result = this:acceptable(@rgs))
fork (this.digestion _duration)

"I's it still there?";
if (itemlocation == this)
"Figure out where to send it, and try to send it
there.™;
pl ace = ($object _utils:has_property(item "hone") ?
item hone |

i tem owner. hone);
i tem novet o(pl ace);
"Now see if it actually arrived.";
if (itemlocation == place)
if ($object_utils:has_verb(place, "announce_all"))
"Set up itemnanme for appropriate pronoun
substitution.";

this.item = item nane;
pl ace: announce_al |l (this:return_item honme_nsg());
endi f
el se
"W failed to get rid of it gracefully, just get rid
of it.";
this:eject_basic(item;
endi f
endi f
endf ork
endi f

return result;

There is one subtlety in particular to which | would like to call your attention.
In the statement:

if (result = this:acceptable(@rgs))

I have done an assignment statement within the parenthetical conditional
statement. Thisis perfectly legal and is often done. It’sthe same as:
if (this:acceptable(@rgs))
<do stuff>
endi f
return this:acceptabl e(@rgs);

except that | call the : accept abl e verb once instead of twice, saving the result for
later.

And now (at long last) we are ready to writethe : f eed verb itself.

Programming 147

mailto:@args
mailto:@args
mailto:@args
mailto:@args

Chow Time!

After all we've been through, this part will be quite easy. Her€' s the prototype:

@erb red:feed any to this rxd

@rogram red: feed
dobj : movet o(t hi s);
if (dobj.location == this)
pl ayer:tell ("Red chonps hungrily.");

el se

pl ayer:tell ("Red | ooks at you dubiously.");

endi f

The item being fed to Red is the direct object of the command, and its object
number is stored in the built-in variable dobj. Red is the indirect object of the
command, and its object number will be stored in the built-in variable i obj , as well
as the built-in variable t hi s (the object on which the currently-executing verb is

defined).

Here is the cleaned up, robust version:

@rop
@r op
@rop
@rop
@rop

)" rc

red.
red.
red.
red.
red.

@ddal i as
@ddal i as
@ddal i as
@ddal i as
@ddal i as

feed _nmsg "You feed %d to %." rc

of eed_nmsg "N %feeds> %l to %." rc

no feed nsg "You try to feed % to %." rc
ono_feed nsg "N %tries> to feed % to %." rc
ptui _nsg "% | ooks at % dubiously. . o O (Ptui!

feed _nmsg to red: pet_nsg
of eed_nmsg to red: pet_nsg
no_feed nsg to red: pet_nsg
ono_feed nsg to red: pet _nsg
ptui _nsg to red: pet_nsg

@rogram red: feed
"Try to feed it sonething.";
dobj : novet o(this);
if (dobj.location == this)
"It ate the whole thing.";
player:tell (this:feed _nsg());
pl ayer. | ocati on: announce(this: of eed_nsg());
this.location:announce_all (
t hi s: happy_response_nsg());

el se

" Ack!
pl ayer:tell (this:no_feed _nsg());
pl ayer. | ocati on: announce(this: ono_feed_nsg());

148 Programming

Ptui! Wuldn't accept it.";

this.location:announce_all (this:ptui_nsg());
endi f

Have you been testing all along? This works pretty darned well. Except that |
tried to feed my pet rock to the rock eater before it had been returned again (I test a
lot), and | got atraceback:

#26703:feed, line 2: Invalid indirection
(End of traceback)

I can reproduce the error by trying to feed Red an object that doesn’t exist:
feed nother-in-law to red

#26703:feed, line 2: Invalid indirection
(End of traceback)

Looking at line 2, we're trying to movedobj . Ahal We need to add a check to
make sure that the specified direct object isavalid object:

@rogram red: feed
"Try to feed it sonething."
if (valid(dobj) && (dobj.location in {player,
pl ayer.l ocation}) && (this.location in {player,
pl ayer. | ocation}))
dobj : novet o(t his);
el se
"Either the thing being fed or the rock eater is not in
the vicinity, or the thing being fed isn't a valid object.";
player:tell ("l don't see that here.");
"Just quit this verb right away.";
return;
endi f
if (dobj.location == this)
"It ate the whole thing.";
player:tell (this:feed _nsg());
pl ayer. | ocati on: announce(this: of eed_nsg());
this.location: announce_all (this: happy_response_nsg());
el se
"Ack! Ptui! Wuldn't accept it.";
pl ayer:tell (this:no feed nsg());
pl ayer. | ocati on: announce(this: ono_feed_nsg());
this.location:announce_all (this:ptui_nsg());
endi f

I chose not to extract, “I don't see that here,” into its own message. It isn't
something | ever expect to change; | don’'t need to do any pronoun substitution; and
it does double duty as a comment within the code. Also during play testing, | found
out that someone could feed Red remotely, and | don't want that because the

Programming 149

messages display to the wrong place and seem incongruous, so | added a check to
make sure that the thing being fed and the rock eater were either in the player's
possession, or in the same location as the player. | should go back and add that same
check to the : pet verb, too. | might not have found this bug on my own. Someone
else noticed it. | like to invite friends to play-test my objects before | present them to
the public, because that helps me find and fix the bugs | didn’t think to look for.

@pr ogram red: pet

if (this.location in {player, player.location})
player:tell (this:pet_nsg());
pl ayer. | ocati on: announce(this: opet_nsg());

el se
player:tell ("l don't see that here.");

endi f

As alast little fillip, I offer the following: Since our pet _nsg verb can handle a

string or alist, I’'m going to edit r ed. pt ui _nsg for greater variety:

@dit red. ptui_nsg

ent er

% takes one taste of % and pronptly spits % dpo] out

again. . o O(Ptui!)

% eats %, but then, with a | ook of great consternation on

%tpp] face, acks % dpo] back up again. . o O(Ptui!)

séve
done
(%4 dpo] isthedirect object’ s object pronoun.)
Whew, I’'m hungry! | think I’ll have a snack before going on to the next part.

TheBreath of Life

The last step in making a pet is to enable it to respond spontaneously to things
that happen around it, and thus seemingly take on alife of its own.

Whenever a verb calls a room’s : announce verb (or one of its variants), the
:announce verb callsthe: tel | verb on every object in the room that has one, and

sends the specified text in as an argument. So by adding a:tel| verb to our rock
eater, it will automatically start “hearing” things going on around it. And then it can

respond. We'll put in a random delay to make its actions seem even more
independent:

@rop red.response_delay 20 rc
A delay (in seconds).

@rop red.action_nmsg {} rc
@dit red.action_nsg

150 Programming

ent er

9% chases %tpp] tail in a slow circling ballet.

% leaps into the air and does a back flip, in a comc bid
for attention.

9% snuffles around, |ooking for rocks.

% | ooks at you with big, sad, soul ful eyes.

% makes a wurfling sort of noise.

save
done

@ddal i as action_nmsg to red: pet_nsg
@erb red:tell tnt rxd

@rogramred:tell

fork (randon{this.response_del ay))
this.location:announce_all (this:action_nmsg());

endf or k

Now say, “Boo,” or something. You can check on your forked tasks by typing
@ or ked.

Whoa! Down Boy!

@ill red:tell

Well! By now you’ve discovered that once started, Red just won't quit. Thisis
because Red hears Red’s own text, and responds to it! So what you get is a sort of
chain reaction. Really, thisistoo much of a good thing, so now we have to work on
toning things down some.

@rogramred:tell
fork (randon(this.response_del ay))

this.location:announce_all _but ({this},this:action_nsg());
endf or k

First, we'll use that third form of : announce that | mentioned earlier,

sannounce_al | _but. This way you won't get an endless chain of actions. But
you'll still get an action out of Red every single time there's a noise in the room. So

for my next trick, I'm going to make it so that sometimes he responds, and
sometimes he doesn’ t:

@rop red.action_odds 3 rc

@rogramred:tell

Programming 151

i f (random(this.action_odds) == 1)
fork (randon(this.response_del ay))
"Odds of responding are 1 in this.action_odds.";
this.location:announce_al |l _but ({this},
this:action_nsg());
endf or k
endi f

Thisis better. But you might want a quieter pet still. (I did.) Whenever | would
pet or feed Red, the messages would trigger an additional response, which still
seemed like too much. So | can go back and edit the : pet and : f eed verbs, or | can
tinker with the : tel | verb a bit more and prevent Red from hearing any of his own

messages in the first place. Take a quick look at hel p cal | ers(). This built-in
function returns a list of all the object/verb pairs (tuples, actually -- there' s additional

information) that resulted in the current verb being called. So we're going to take a

look at cal | ers() from withinred: tell and filter out any noise generated by Red
himself. Thisis pretty advanced stuff, and even | do a bit of preliminary prototyping

before using cal l ers(), because | aways forget just how it goes. Here's the
prototype:
@rop red.callers O r

A temporary property to hold data that | want to look at.

@rogramred:tell
this.callers = callers();
i f (random(this.action_odds) == 1)
fork (randon(this.response_del ay))
this.location:announce_al | _but ({this},
this:action_msg());
endf or k
endi f

Pet red, to trigger the process. Now we will use a special form of the eval
command, “#” to inspect the results:

#red
=> #26703 (Big Red Rock Eater)

#red.cal l ers

=> {{#23920, "announce_all", #2, #3, #58337}, {#23920,
"announce_al | ", #24442, #17755, #58337}, {#23920,
"announce_al | ", #61050, #9805, #58337}, {#26703, "pet",

#58337, #26703, #58337}}

By scrutinizing it, | find the number of my rock eater (#26703 in this example).
Your numbers will be different, but look anyway. This is a list of lists. | want to
consider only the first elements, and see if Red’s : tel | verb was indirectly called by

152 Programming

Red. If it wasn't, then and only then will Red react. To do that, I'll use
$list_utils:slice (there'shelptext—giveit atry):
@rogramred:tell
"Respond to noi ses generated by anything *except* this.”
i f (random(this.action_odds) == 1)
if (!(thisin $list_utils:slice(callers())))
fork (randon(this.response_del ay))
this.location:announce_al |l _but ({this},
this:action_nmsg());
endf or k
endi f
el se
"This was the source of the noise, so do nothing.";
endi f

@nprop red.callers

Test this by saying things, petting your rock eater, feeding it, etc. Check
@ or ked alot.

Thisis amost perfect. (Wouldn't you know.) If you wereto trigger Red’'s: tel |
verb and fork the task, then move Red to #- 1%°, you would get a traceback, because
#- 1 doesn't have an : announce_al | _but verb. Sowe'll add acheck for that:

@rogramred:tell
"Respond to noi ses generated by anything *except* this.";
if (!(this in $list_utils:slice(callers())))
i f (randon(this.action_odds) == 1)
fork (randon{this.response_del ay))
if ($object_utils:has_verb(this.location
"announce_al | _but"))
this.location:announce_al | _but ({this},
this:action_msg());
endi f
endf ork
endi f
endi f

Last, | take a step back to see if | can condense the code without sacrificing

clarity, and | think | can. Those two nested i f statements can be consolidated into
one:

@rogramred:tell
"Respond to noi ses generated by anything *except* this.";
if (!(this in $list_utils:slice(callers())) &&

B#- 1 isthe null object. It has no properties or verbs.

Programming 153

(random(this.action_odds) == 1))
fork (randon(this.response_del ay))
if ($object_utils:has_verb(this.location,
"announce_al |l _but"))
this.location:announce_al |l _but ({this},
this:action_nmsg());
endi f
endf or k
endi f

Now al that's left is to tinker with red.action_odds

and

red. response_del ay until you get the right feel for your pet. Some rock eaters

might be placid, others might be frisky.

Care and Feeding of a Big Red Rock Eater

Just alast little bit of grooming to do, and we' re done:
@rop red. obvious_verbs {} rc

@et red.obvious verbs to {}
@dit red. obvious_verbs
enter

pet %what >

feed <anyt hing> to %what >

save
done

@erb red: exani ne_verbs tnt rxd

@r ogram red: exam ne_ver bs

what = dobj str;

vrbs = {};

for vrb in (this.obvious_verbs)

vrbs = {@rbs, $string utils:substitute(vrb, {{"%what>",

what}})};
endf or
return {"Cbvious verbs:", @rbs};

Thisisthe usua stuff. | deliberately omitted @ender %<what > from the list of
examine verbs, because that’s an owner-only verb: You know it’'s there, and no one

else needs to.

154 Programming

mailto:@vrbs};

@rop red. help_nsg {} rc

@dit red. hel p_nsg

enter

This is %. Treat %Ytpo] with love and ki ndness and %t ps]
will be your friend forever.

% Tps] likes to eat rocks, but will eat just about anything
except players. (Things which have been eaten will be noved
back to their homes after a while.)

save
done

@erb red: hel p_nsg tnt rxd

@rogram red: hel p_nsg

"This message has its own separate verb because the regul ar
nmessage verb returns a randomelenent of a list. But if
this.help_nmsg is a list, we want the whole thing.";

return $string_utils:pronoun_sub(this.(verb));

This is your big red rock eater. Treat it with love and kindness, and it will be
your friend forever.

Afterword

That’ s about it.

We started with the very rudiments of adding a verb to an object, and have
worked our way through some fairly sophisticated stuff. You may or may not feel
that you’ ve grasped it al, but my primary goal was to give you some exposure to how
MOOcode works, and to make it all less intimidating, in hopes that you will be
inspired to explore further.

Be bold! Experiment. Try things. Don’t be afraid of breaking something. There
isvery little on the M OO than can be harmed by accident, and even less that can’t be
fixed. Go for it!

Programming 155

M OO Programming Reference

This section is geared toward people who are at least somewhat comfortable with
programming. For the fine points | refer you to the programmer’s manual itself.
Here, | have tried to present an overview of the MOO programming language in a
format that is biased towards ease of reference rather than exhaustive explication. |
have provided brief explanations of some points where | think clarification might be

hel pful.

Data Types

Variables are not of fixed data type; they become the data type of the value

assigned to them. Uset ypeof (<vari abl e>) to see what you’ ve got.

I NT

Integer: 29, 0, -0, 5

FLOAT

Floating point number: 29.0, 0.0, 5.0

NUM

Historical, same as| NT. (FLOAT was alater addition.) FLOATs

and | NTs don’t mix and match. Use toint() or tofloat() to force
oneto be the other. Note that (1 == 1.0) evaluatesto false.

STR

A quoted string: " pi ckl es". To include the double quote mark
itself in a string, precede it with the backslash character:
"diver shouts, \"Yow \"" Strings are case-insensitive:
("carrot" == "CarROI") evaluatesto true. Use

equal ("carrot", "CarROT") if you need to differentiate
between the two.

An object, e.g: #1234. In conditional statements, an object by
itself evaluatesto false. Useval i d(<obj ect >) instead. Some
special objects:

e #-1 or $not hi ng. Not valid, but anything may be moved
there. The canonical invalid object.

e #-2 or $anbi guous_nat ch.
e #-3or$failed_match

* $garbage Thisobject and kids of it are valid but not useful.
They are all owned by the special system player Hacker.
When an object isrecycled, it becomes akid of $gar bage.

156 Programming

LI ST {1, 2.5, "a string", {"a", "sublist"}, #321,
E_RANGE, 2.5}

LI STs are designated with curly braces ({}), may nest to an
arbitrary number of levels, and their elements need not be of the
same datatype. Their elements are preserved in order and may
include duplicates (i.e. they are not like mathematical sets).

The @ operator yields the elements of the list as separate
elements. Another way to phrase thisisthat it isthe inverse of
putting curly braces around some elements. Two canonical uses.

<sone-list> = {@sone-list> <new elenent>}; Thisis
the usual way to add an element onto the end of alist. If ais
{1, 2, 3},andbis4,then{@, b} givesthefour-element list
{1, 2, 3, 4},whereas{a, b} would givethe two-element
list{{1, 2, 3}, 4}.

pass(@rgs); Thiscausestheidentically-named verb on the
current object’ s parent to be run with the same argument list. If
you just did pass(ar gs) , then the arguments to the verb being
called would have an extra set of braces around them, thus
making the argument list {{a, b, c}}, for example, instead of
{a, b, c}.

<el enment > in <some-|i st> will return the (1-based) index of
the first instance of <el enent > in<sone-1i st > if itis present,
0 otherwise. A typical usage might be:

if (itemlocation in {player,
pl ayer. | ocation})
<exprs>;
endi f

Programming 157

mailto:@
mailto:@<some-list>, <new_element>
mailto:@a, b
mailto:@args

ERR E_NONE

E DIV
E_PERM
E_PROPNF
E_VERBNF
E_VARNF
E_INVIND
E_RECMOVE
E_MAXREC
E_RANGE

E_ARGS
E_NACC

E_INVARG
E_QUOTA
E_FLOAT

try

no error

E _TYPEtype mismatch

division by zero

permission denied

property not found

verb not found

variable not found

invalid indirection

recursive move

too many verb calls (max recursion)

range error (subscript too large, or zero, or
negetive)

incorrect number of arguments

move refused by destination (i.e. object
not acceptable)

invalid argument
resource limit exceeded
floating-point arithmetic error

Errors can be raised (yielding atraceback) or caught (then
handled or ignored). The following two constructs are used to
trap errors and deal with them:

‘<exprl> ! ANY => <expr2>'

See section 4.1.12 of the programmer’s manual. The single
quotes are part of the expression, and are specifically back single
quote and forward single quote.

<exprs>;
except ANY

<al ternate exprs>;
endtry

See sections 4.2.7 and 4.2.8 of the programmer’ s manual.

Subscripting

Everything is 1-based.

Y ou can subscript lists or strings.

158 Programming

<list-or-string>[<exprl>..<expr2>] gives dlices (sub-list or sub-string).
<exprl> and <expr2> must be in range; <list-or-string>[$] is the last
element or character.
The following are well-formed:
<variable> = <list-or-string>[<expr>];
<variable> = <list-or-string>[<exprl..expr2>];
<list-or-string>[<exprl>] = <expr2>;
<some- | i st >[<expr 1>..<expr2>] = <expr3>;
<some- st ri ng>[<expr 1>..<expr2>] = <expr4>;

Note that in the above example, <expr 3> must evaluate to a list and <expr 4>
must evaluate to a string.

Accessing Properties and Verbs on Objects

$<sonet hi ng> isthe same as#0. <sonet hi ng>.
Y ou can use parentheses to access property names and verbs dynamically:

<obj ect >. (<cal cul at ed- pr opert y- nane>)
<obj ect >: (<cal cul at ed- ver b- nanme>)

Variables

Variables are local and dynamic, coming into existence when assigned a value.
For global variables, define and use a property.

In addition to the data types themselves (which evaluate to integers), the
following built-in variables are provided:

this The object on which the currently-running verb is defined.
pl ayer The object number of the player who typed in the command.
cal ler The objnum of the object on which the calling verb is defined, or
pl ayer, if the verb was called from the command line.
verb The name by which the currently-running verb was invoked.
Verbs may have aliases.
args Thelist of arguments with which a subroutine was called or, if a
command-line verb, with which the command was invoked.
argstr Everything that was typed in after the verb name on the command
line.
dobj The direct object as parsed from the command line.
dobj str The string from which dobj was matched.

Programming 159

prepstr The string that was parsed as the preposition.
i obj The indirect object as parsed from the command line.
i obj str The string from which iobj was matched.

Any of these may be reassigned within a verb and their values will persist into

the next verb call except that cal |l er will change to the current object, and a
changed value of pl ayer will not persist unless the verb’s owner is awizard.

Scattering Assignment

Several variables may be assigned values in asingle line, and this is often done to
assign incoming arguments to named variables. A typical example might be:

{who, what, ?where = player.|ocation, ?when=tinme()} = args;
See section 4.1.9 of the programmer’ s manual for a detailed explanation.

Operators

The following operators apply, in order of precedence:

I not

- arithmetic negation (without aleft operand)

A exponentiation

* multiplication

/ division

% modulo

+ addition (note, + also concatenates two strings)

- subtraction

== is equal to (note, easy to confuse with the assignment operator —
nasty!)

| = is not equal to

< less than

<= less than or equal to (note, =< doesn’t work)

S greater than

S= greater than or equal to (note, => doesn’t work)

in element position in alist

&& logical “and”

160 Programming

[logical “or”
L? the conditional operator.
<expr1l> ? <expr2> | <expr3>

is equivalent to:
if (<exprl)
<expr 2>;
el se
<expr 3>;
endi f

= assignment (note, easy to confuse with atest for equality — nasty!)

Assignments may appear within expressions. Use parentheses liberally to avoid
mistakes and confusion.

Truth Values

0, -0, 0.0, -0.0, "", {}, errors, and objects all evaluate to false. Anything
else evaluates to true.

Compound Statements

Use a semicolon after expressions within the body of a compound statement, but
not after lines of the compound statement itself, thus:
if (<expril>)
"This is a coment.";
<expr2>;
<expr 3>;
el sei f (<expr4>)
<nor e- expr s>;
el sei f (<expr5>)
<sonet hing el se entirel y>;
el se
"None of the above.";
<fi nal - exprs>;
endi f

Programming 161

L ooping

for <variable> in (<sone-Ilist>)
<exprs>;
endf or

for <index> in [<intl>. .<int2>]
<exprs>;
endf or

whi I e (<condition>)

<exprs>;
endwhi | e
br eak;

br eak <nane>;
conti nue;

conti nue <nanme>;

(See section 4.2.5 of the programmer’s manual for the fine points of br eak and
conti nue.)

Background Tasks

fork (<del ay-in-seconds>)
<exprs>;
endf or k

fork <variabl e> (<del ay-i n-seconds>)
<exprs>;
endf or k

. In the second example, <vari abl e> receives the number (task_id) of the forked
task.

Time M anagement

A task is the execution of a command from start to finish, or the execution of the

statements within a fork/ endf ork statement from start to finish. Tasks are
identified with numbers, and are allotted a fixed number of ticks and a fixed number

of seconds for execution. The LambdaCore default is 30,000 ticks for a foreground

162 Programming

task and 15,000 ticks for a background task. Properties to override these numbers
may be added to the object $ser ver _opti ons by awizard and inspected (if present)
by programmers.

If atask runs out of ticks, it is unceremoniously terminated by the system. If a
task is in danger of running out of ticks, a programmer may get a new allotment by

suspending the task briefly (note, suspend ($l ogin. current_| ag) is considered
polite). When atask suspends, it obtains an additional allotment of ticks, so it is not

uncommon to find or place asuspend() statement either right before or inside of a
loop.

The utility verb $command_ut i | s: suspend_i f _needed() might suggest itself,
but in fact it uses up a fair number of ticks, itself. Current fashion is to use a line of
the form:

((ticks_left() < 3000) && suspend($login.current_lag));
See also sections 4.4 and 5.2.8 of the programmer’s manual .

Argument Specifiers

When defining a verb on an objhect (with the @erb command), you must
provide specifiers for the arguments with which the verb will be invoked.

The allowable specifiers are:

» direct object specifiers
this
any
none

* prepositions

none
any

wi t h/ usi ng
at/to

in front of

in/inside/into

on/ ont o/ upon/ on top of
fromfrominsi de/ out of
over

t hr ough

under / under neat h/ beneat h
behi nd

besi de

f or/ about

is

Programming 163

as
of / of f of

* indirect object specifiers
this
any
none

Definite and indefinite articles are omitted. When deciding which argument
specifiers to use, it is helpful to imagine what a user would actually type when
invoking the command, then generalize from that. When writing subroutines that
aren’t intended to be invoked from the command line, specify the arguments as
“this none this”.

Eval

The eval command evaluates a string as MOOcode. Like say andenot e, it can
be abbreviated to a single character command, ;. A second form, ;; evaluates a
sequence of expressions, each terminated by a semicolon (as in a verb). Compound
statements don’'t end in a semicolon. The form using two semicolons prints out O as
iLs valtée; if you want to see results you should include acall to pl ayer:tell(); at
the end:

;; "Count players who have nore than ten aliases”; total = 0;
for dude in (players()) if (length(dude.aliases) > 10) total
= total + 1; endif endfor player:tell("Total: " +

tostr(total));

A second form of eval , “#” matches an object by name if it's in your vicinity,
and is useful for looking at properties or just quickly finding out the object number of
something close by. Property names can be chained:

#rock

#rock. noss_|i st

#yib p

#yi b.aliases p

#yi b. | ocati on. owner. nane p

The last form, terminated by “ p” matches the name of a player even if you're

not in eir vicinity, so that you don’t have to know eir number to look at a (readable)
property on em. “#” can also be used with object numbers directly:

#58337. 1 ocati on. contents

Use @et env to set up some commonly-used variable settings in advance:
@etenv me = player; here = player.location;

Inspect the result with
#ne. eval _env

164 Programming

Seealsohel p eval and hel p #.

Owner ship and Per missions

Every object has an owner. Every property on every object has an owner, but it
doesn’'t have to be the same as the owner of the object. Every verb on every object
has an owner, but it doesn’t have to be the same as the owner of the object.

Task permissions are expressed as an object number, that of the player who owns
the verb currently being executed.

The function cal | er _perms() returns the task permissions of the calling verb,

Ic_)r #- 1 (an invalid object) if the currently running verb was called from the command
ine.

Inherited verbs always have the same owner as the owner of the corresponding
verb on the parent or ancestor object. They run with that owner’'s permissions,
except that wizard-owned verbs can set the task permissions to another (usually non-
wizardly) player.

To+c Or To-c, That IsThe Question

Ownership of an inherited property depends on whether the property was
initially defined as+c or -c. If it was defined as +c (think “may be changed by the
owner of the child/descendent object”), then the property is owned by the owner of
the child/descendent object. If the property was initially defined as - ¢ then the
property on all children and descendents is owned by the player who defined the
property on the parent/ancestor object, and its value can be changed by verbs running
with that player’'s permissions. This becomes relevant when one is making a generic
object. If the owner of a child or descendent object will need to @et or otherwise
change the property, then define it as +¢c. This is typically done for messages, and
also for other parameters, for example the number of times one must turn the crank
before the jack in the box pops out. If, on the other hand, one of the verbs you write
on the generic will need to change the value of a property, then it should be defined
as -c so that the property on all descendent objects will still be owned by you. Then
your verbs, running with your permissions, can change it (for example, the number
of times the crank on the jack in the box has been turned so far).

When you make an object strictly for your own use, it really doesn’t matter
whether the properties are +c or - c. It becomes an issue when other people make
kids of your object. Then if a property that one of your verbs needs and tries to
change is mistakenly +c, the verb will encounter a permissions error. If you @hnod

the property to - ¢, then all new kids of the object will have that property owned by
you, but it isn’t changed retroactively for existing kids. If you make a property +c and

find out later that it should have been -c, you can change it on all descendents by
evaluating the following:

Programming 165

;$wi z_utils:set_property_flags(<object>, <property_nane>,
<property_flags>)

You don’'t have to be a wizard to use this verb — just the owner of the object.
Her€e' s an illustration, supposing that a generic conker is object #1234
;9w z_utils:set_property flags(#1234, "thwaps", "r")
This would have the effect of making the. t hwaps property on all descendents

of the generic conker readable but neither writable nor changeable (by owners of kid
objects), and the property would be owned by the author of the generic conker in all

cases (and could be changed by that player’ s verb(s)).

Hidden Treasures

Some verbs are called automatically, seemingly invisibly. Here are some of them:

<obj ect >: | ook_sel f Called when you look at <obj ect >
<obj ect >: descri ption Called (if it exists) by : | ook _sel f
<obj ect>:tel |l _contents | Called (if it exists) by : | ook_sel f

<obj ect >: ent erfunc Called when something is moved to <obj ect >
<obj ect >: exi tfunc Called when something is removed from

<obj ect>'s. cont ents.
<r oon®: conf unc Called when someone connects inside a room.
<r oon®: di sfunc Called when someone disconnects inside a room.
<pl ayer >: conf unc Called when a player connects
<pl ayer>: di sfunc Called when a player disconnects
<object>:initialize Called when an object is created. Use, for

exampleto initialize parameters on the kid of a
generic object.

<obj ect>:recycl e Called right before an object is recycled.
<pl ayer - or - r oon®: huh Called if the parser can’t find an object with the
appropriate verbspec. Thisis how exitsin rooms

are invoked without the exit objects’ having to be
in rooms, for example.

166 Programming

A Couple“Tricksof the Trade”

Sending mail messages from within a verb: The relevant verb is
$mai | _agent: send_nessage. Personally, | always find the help text hard to read,
so | am providing thisillustrative example, which | hope may be helpful:

; $mai | _agent : send_nessage(ne, {ne},
"This is the subject heading", {"Linel", "Line2", "",
"Oooga boooga! "})

Creating objects on the fly is fun, and possible if you are not over quota. Hereis
an example of how it’s done.

@erb ne:test none none none rd

@pr ogram me: t est
"Sanpl e verb to denonstrate creating an object on the fly.";
thingl = “$recycler: _create($thing) ! ANY =>

$not hi ng' ;
if (valid(thingl))

t hi ngl: set _name("t hingl");

t hi ngl: novet o(pl ayer. | ocation);

"If you create a lot of things, then you need to neasure
them as you go to avoid a 'resource linmt exceeded error.";

$quot a_util s: obj ect _bytes(thingl);

pl ayer:tell ("You now have sonething that you didn't have
before!");
el se

pl ayer:tell(

"Couldn't create thingl. Don't know why.");

endi f

t est

To recycle an object (that you own) from within averb:
$recycler: _recycl e(<obj ect>);

Programming Featur e Objects

Thisisavery brief summary of the steps involved in creating a feature object. It
isn't a tutorial on programming in general, but highlights a couple of quirks
associated with programming this particular kind of object.

First, create akid of the generic feature object:
@reate $feature naned <your-FO nanme>
Then describeit.

Programming 167

Then program some verbs on it. Note that the verbs have to have the “x”
permission flag set, so that they can be called from other verbs.

Then add help text. This can be done in either of two different ways. Thefirst is

to edit your feature object’s . hel p_nsg property. You should present each of the
verbs on your FO that are intended for public use (as opposed to internal
subroutines), give the syntax for the verb’ s usage, and a brief explanation of what the
verb does. The other way is to put the documentation for each verb intended for
public use as a set of comments at the top of the verb. The second is the officially

preferred method (as per hel p $f eat ur e), but both will work.

THEN: In either case you must edit your FO’s. f eat ur e_ver bs property. If you
put all the documentation in the help_msg property, then type:

; <your - FO>: set _feature_verbs({})

If you put the documentation for each public-use verb at the top of each verb,
then type:

; <your - FO>: set _feature_verbs({"<verbl>", "<verb2>",
"<l ast-verb>"})

If you wish to restrict who may add your feature object, write a custom

: feature_ok verbonit. Thisverb should return O if for whatever reason the person
may not add the feature, or a truth value otherwise. An example of when this might

come in handy might be afeature only for use by wizards.
Seedsohel p features andhel p $f eature.

Built-In Functions

See the online help text or the programmer’s manual for the specifics of each
individual function — here’swhat’ s there:

The quintessential object-oriented function:

pass()

General operations applicable to all values:

typeof () t oobj ()
tostr() tof | oat ()
toliteral () equal ()
toint() val ue_bytes()
t onum() val ue_hash()

Operations on Numbers:

r_andom() max()
m n() abs()

168 Programming

floatstr()
sqgrt()
sin()
cos()
tan()
asin()
acos()
atan()
si nh()

Operations on Strings:

I engt h()
strsub()

i ndex()

ri ndex()
strenmp()
decode_bi nary()
encode_bi nary()

Operations on Lists:

[engt h()

i s_menber ()
listinsert()
listappend()

Manipulating Objects:
chparent ()

val i d()
par ent ()
children()

obj ect _bytes()
max_obj ect ()

nove()

properties()
property info()

set _property_info()
add_property()

del et e_property()
is_clear_property()
cl ear _property()
ver bs()

verb_info()

set _verb_info()

cosh()
tanh()
exp()
log()

| 0g10()
ceil ()
floor()
trunc()

mat ch()

rmat ch()
substitute()
crypt()
string_hash()
bi nary_hash()

listdelete()
listset()
set add()
setrenove()

verb_args()

set _verb_args()
add_verb()

del ete_verhb()
verb_code()

set _verb_code()

di sassenbl e()

pl ayers()
is_player()

set _player flag()
connect ed_pl ayers()
connect ed_seconds()
i dl e_seconds()
notify()

buf f ered_out put _| engt h()
read()
force_input()

Programming 169

flush_input () connecti on_option()

out put _delimters() open_net wor k_connecti on()
boot pl ayer () listen()
connection_name() unlisten()

set _connection_option() |'isteners()

connection_options()

Operations Involving Times and Dates:
time()

ctime()

MOO-Code Evaluation and Task Manipulation:

rai se() task_id()

call _function() suspend()
function_info() resune()

eval () queue_i nfo()
set _task_perns() queued_t asks()
cal l er _perns() kill _task()
ticks left() callers()
seconds_| eft () task_stack

Administrative Operations:

server _l og() dunp_dat abase()
r enunber () db_di sk_si ze()
reset _max_obj ect () shut down()

menory_usage()

$ULtils

Some of the built-in functions are used frequently in everyday programming,
some are used rarely, or only by wizards, or both. The MOOQO also provides a
collection of utilities packages. Each utilities package has its own top-level help text,
and each verb has more detailed help text. This list is just the $utils packages
available in LambdaCore. A reference list of all the verbs on each is provided in
Appendix B.

$wiz_utils $lock_utils
$math_utils, $trig utils $list utils
$set _utils $conmmand_utils
$seq_utils $code_utils
$gender _utils $bui I ding_utils
$time_utils $string_utils
$match_utils $generic_utils
$obj ect _utils $quota_utils

170 Programming

$byte quota utils $matrix_utils
$obj ect _quota_utils $convert _utils

Programming 171

Part ||
L ambdaM OO

LambdaM OO first went online on October 31, 1990, and is the oldest
and largest MOO going. Its theme of a large mansion and its grounds is
something that almost everyone can relate to, and many people have done
an enormous amount of wonderfully creative building there.

Part | provided information that is applicable to all or nearly all MOOs
based on LambdaCore. Part Il will detail a variety of things that are specific
to LambdaM OO, though many of them (feature objects, in particular) are
available in some form on other MOOs.

Chapter 7 —-Yib’'s Guide To I nteresting Places

This is a persona compendium of my favorite places in and around Lambda
House. Each section is devoted to a particular room, and describes why it's
interesting and how to get there. Walking directions to each room are given in terms
of previously-described rooms. To get an overview of the layout of the main part of

the house, type hel p map. Other maps are available in the map room, which is
northeast from the library.

An effort such as this can only begin to scratch the surface of a place as rich and
varied as LambdaM OO, but it is my salute to those who have given so generously of
their time and creativity.

The Coat Closet (#11) and The Linen Closet (#47726)

The coat closet is the room where all guests start when they first connect. Its
other salient feature is that it's dark in there: You can hear people (provided
someone says something), but, unlike most other rooms, you can’t see them.

The linen closet is like the coat closet except that in addition to being dark it is
also quiet: You neither hear nor see others who might also be there. This can be
useful, for example, if you want to read help texts or mailing lists undisturbed.

Thereisalever in each closet that will move you to the other one.

As of May, 2003, guests home is set to the linen closet. A petition to set guests’
home to the coat closet (since they begin there) awaits vetting by the wizards.

The coat closet is northeast from the living room.

To get to the linen closet from the living room, go north to the entrance hall,
east twice, up, then northeast.

TheLiving Room (#17)

After the two closets, the living room is where it all begins. Accessed either by
going out the door of the coat closet, or by pressing the button in the linen closet,
this is where most new MOQOers first hang out and visit before they find their own
circle of friends, and where many old M OOers hang out to converse with one another
and meet new people.

The cockatoo has graced the living room with its charming conversation almost
since time immemorial. It “listens’ to the conversation, “learns’ short phrases, and
parrots them back at alater time. Y ou can make it be quiet for awhile by typing gag
bird. If you type @ag! bird instead (note the “@” sign and the exclamation
point), then you will stop hearing it at all until you @ngag it again. You can erase

175

mailto:@

its stored up set of learned phrases by scrubbing it. You can also poke it to make it
squawk something, feed it, and release it.

The fireplace/mantel is also an old and venerable living room object. You can
put things on the mantel, and take things from it. You can build a fire, and roast
things on it. Advanced investigations will yield a way to customize what players see
if someone tries to roast you in there! If there isn't a fire going, you can enter the
fireplace, pull the chain in the sooty chamber, and wind up somewhere else — a fun
way to explore. Note that the name you use to identify it makes a difference: put
<sonet hi ng> on mantel is different from put <sonething> in fireplace
(especidlly if thereisafire burning!).

The living room’ s description mentioned a couch (two sets of couches, actually)
for the longest time. Then someone built an actual VR couch. You can sit on it,
shove people off, stuff things into it, jostle it, reupholster it, search for things, and
(occasionally) fall in. From under the couch cushions, you can shout, or return
something that fallsin (from someone else’ spockets, to be sure).

The birthday machine lets you ook up peopl€’ s birthdays, and register your own,
if you so choose.

The Helpful Person Finder (one of two, the other residing in the Library) can be
used to find helpful persons. Or ask around.

Please straighten the welcome poster if it happens to be a bit crooked.

The Entrance Hall (#19)

This small foyer is the hub of the currently-occupied portion of the house.

The mirror at about head height has been in the entrance hall for ages. Be
advised that if you look at it, you will be transported to another place, the Looking
Glass Tavern Bar. Newer portals (as such things are commonly called) let you look at
and examine them without committing yourself to being transported, but this one
has always provided the rush of going somewhere without quite knowing what’'s
happening yet. If you want to return, just look at the mirror in the bar, and you will
find yourself back in the entrance hall again.

The globe is a very old artifact, authored by waffle (#9082). You can enter the
globe, and can add and describe your home country/state/town. Except for the top
level (the seven continents), anyone may add or remove a place, so it's pretty
dynamic. If you return later and find your home town missing, just add it again.

Edgar the Footman is one of the household servants. Heisn't so good at fetching
things, but you can give something to him and ask him to deliver it to someone else
for you.

To get to the entrance hall, go north from the living room.

176 Interesting Places

The Dining Room (#28)

I don't know whether anyone has ever actually dined in The Dining Room. For
aslong as | can remember, the dining room has been a repository for various toys and
games. (Scrabble has had a particularly enduring popularity.)

Different games have different syntaxes for starting play. Many are set up as
portable rooms. Enter them to get started. Others work differently. Examine them
to get initial information on how to play.

The 'nopoly bank contains the Red Hotel, which is one of several places on the
M OO where one can set up a home.

There is a chest for the games, but few people seem to put games away. Or, if
they do, the games are set to return to the dining room proper. Oh, well.

To get to the dining room, go west from the entrance hall.

TheKitchen (#24)

The Kitchen is one of the original rooms of the mansion, and has within it many
quaint examples of an older style of programming, when objects did not routinely
have help text associated with them.

The cookbook explains how to make MOO food. Food and food fights were a
big thing in the early days. People threw food, and dodged food, and had transparent
shields rendering them impervious to food fights. Most players, though they don’t
realize it, can still type bori ng on andbori ng of f to activate and deactivate this.
You needn’t feel inhibited about throwing food around: Mr. Clean will come and
clean it all up again.

The cuisinart turns ordinary things into a puree, and purees are a kind of food, to
be eaten and thrown etc. (The origina ingredients of a puree are temporarily
removed from sight, but are not really gone.) The cuisinart doesn’t have help text per
se, but you can type about cui si nart to get more information.

Y ou can cook food and other things (and people€) in the microwave.

The dishwasher is one way to remove food from things (and people).

A carrot is one kind of food. You can eat it. You can also bonk people with it.
This is the original precursor to bonking feature objects, which force other people to
say things. Strictly speaking, bonkers are unmannerly, but they have nonetheless
become a part of our MOO culture, and in fact were used on MUDs even before
M OOs came into existence.

There' s also a nice plate of chocolate chip cookies. Help yourself. Take them to
the living room to sharel!

Then there' s the kitchen sink. Y ou can wash your hands in it, or anything else.

Once upon a time, before we had @o and @ oi n, people had to wear teleporting
rings in order to zip from Point A to Point B. Rings had a nasty tendency to dlip
down the drain while you were washing your hands.

Interesting Places 177

The piece of Saran Wrap(tm) is one of the MOO’s oldest practical jokes. People
in the know can ask it not to cling to them. People not in the know attract it like,
well, a clingy piece of Saran Wrap(tm). It flutters just at the edge of their vision until
they pedl it off, and people who look at them notice that they look silly wearing it. It
has been set permanently not to pester guests, which got mixed reviews at the time.
At one point it was fertile, and other people could make their own instances of it, but
things started to get out of hand, so now there’'s only one again. The piece of Saran
Wrap(tm) has had several owners over the years.

Y ou can read and post notes on the refrigerator. Some notes have fallen into the
pile of scraps of paper.

There is a vent, which you can enter. Many of the original rooms in the house
are connected by the vent system, and thisis an alternate way to get around.

There used to be a blender, which was a colorful and definitive way to leave the
MOO. Lambda decided that it was just too gross, and banned it, so then you could
off yourself by walking off the Edge of the World, at the westernmost end of the
street in front of the house. Later, aballot was passed that made it so that walking off

the Edge only resulted in along @ewt i ng, and maybe you stayed away, and maybe
you came back. Then there was another ballot to bring back the blender and reduce

the @ewt i ng time at the Edge of the World. (That ballot is in the throes of being
implemented at the time of thiswriting.)

To get to the kitchen, go northwest from the living room. To get back to the
living room, you must first go northeast to the entrance hall, then south to the living
room. In spite of the protocol specified in hel p t heme, which says that exits are
supposed to be symmetric, this connection remains as an artifact of the origina
house on which Lambda House was modeled. There, when going from the living
room to the kitchen, it feels like a one-step process, but going from the kitchen to the
living room feels like going into the entrance hall, then turning a corner and going
south into the living room.

The Family Room (#33)

The family room is “comfortably crowded with plush couches and easy chairs.”
Though not an especially popular venue today, it seems to have been quite the
playground for early M OO technol ogists.

Of particular historical interest isthe postcard from France. Reading the postcard

will transport you to Un Cafe Parisien. (TyPe out to get back.) This is an early
example of what has come to be called th y transition, whereby one is transported
to a place that has nothing to do with the mansion and grounds proper, but the
connection is nonetheless accomplished in alogical (if magical) way.

Blob’'s Apple][e computer seems to be a prime example of early experiments in
MOO coding. | haven't figured out how to use it outside the following sequence of
commands:

178 Interesting Places

wat ch conput er
put diskette in conputer
turn conputer on

<wait>

type "connect guest" on computer
type "l ook" on computer
type "out" on conputer

<the computer crashes>

type "z" on conputer

<the program restarts>

turn computer off

i gnore comput er

t ake diskette from computer
turn conputer off

There is every reason to think that other programs could be written for it, if one
wanted to do so.

The bookcase itself is of afairly old vintage, before we had (various) generic open
containers like tables and shelves and bowls and vases. So the bookcase is a regular
$cont ai ner. The description does not mention its having doors, but if you examine
it, you will see that one of the obvious verbs is to open it, and when you do, the
messages refer to opening doors. If the doors aren’t open and you merely look at it,
rather than examining it, then it isn’t obvious that there' s stuff in it.

You can| ookup aword in the dictionary.

The VCR works and is fun. A camcorder and several tapes can be found in the
bookcase.

The wind-up sushi works, and does about as much as you might expect a wind-
up sushi to do.

You can rub Aladdin’s lamp to get some food. (See the entry on The Kitchen for
more information about food.)

The display case hanging on the wall seems to be intended as a haven for
portable rooms, but | have not been able to confirm this for sure.

To get to the family room, go west from the kitchen.

The Laundry Room (#36)

As with any household, a variety of items come and go from the laundry room,
but there always seems to be a pile of dirty laundry here. You can climb onto the
pile, and jump off again.

Interesting Places 179

There is a laundry chute here, which is one of the most delightful examples of
interconnectedness among M OO objects that | know of. Easy puzzle: It ispossibleto
enter the laundry chute from below.

From above, you can drop things into the chute (they wind up in the laundry
room, as you would expect), and you can also slide down it yourself (woo-hoo!).

To get to the laundry room, go north from the family room.

Housekeeper’s Quarters (#16563)

Asyou might expect, the housekeeper’ s quarters are neat and tidy.

By convention, the housekeeper’s gender is not assumed, and no pronouns are
used. Thus:

The housekeeper does the housekeeper's job efficiently and
i ndef ati gably.

Since two of the most basic things one can do with objects is take them and drop
them, one can easily imagine that dealing with clutter became an issue early on, and
enlisting the services of the housekeeper is one way of managing said clutter. The
housekeeper’s mission is to return objects to their places, and there is a long note in
the housekeeper’ s quarters which explains how to request that an object be returned
periodically to a particular location. The housekeeper tries not to clean a thing up
which the housekeeper believes to be in use, either because it is held by a connected
player, or in the room with a connected player, or otherwise clamsto be in use viaa
property or verb on the object in question.

There arises, then, the prospect of the owner of the location where someone
wishes to store an object not wishing em to store it there. On LambdaM OO it is
generally recognized that the rights of the former supercede those of the latter. There
also is the quite separate question of how a room owner may consistently keep a
room free of any and all unwanted objects. One way this is done is with the generic
self-cleaning room, #27777. The housekeeper is savvy enough not to accept
instructions to clean an item to a room whose owner has set the room to be self-
cleaning, unless the room’s owner has first indicated the item is welcome there by
adding the item to the room’ s list of residents.

To get to the housekeeper’ s quarters, go west from the laundry room.

The Powder Room (#116)

The powder room has exactly the amenities that you would expect a powder
room to have. Our plumbing isin good working order, in spite of the wide variety of
objects that people flush down our loo.

The mirror hanging on the west wall of the powder room is kin to the mirror
hanging on the east wall of the entrance hall: looking at it will transport you.

To get to the powder room, go east from the entrance hall, then north.

180 Interesting Places

Ground Floor Stairwell (#6182)

The stairwell provides access to the original three floors of the mansion, and to
the original set of sub-basements. Floors 1 and 2 generally contain various private
suites; above those is access to the roof and the observatory. Below are an uncounted
number of basements and sub-basements. The policy for getting a room connected
to the lower stairwell is generous, so there' s no telling what you might find in your
explorations.

The house has an elevator. On the upper floors, you must exit the stairwell to
access the elevator. In the basements, elevator access is from the stairwell itself. You
can take the elevator to Chinal

<from Ground Floor Stairwell>
press down
<the elevator arrives, the doors open>

east

read directory

press B4251998
<wait>

out

To get to the ground floor stairwell, go east from the entrance hall, then south.

M aster Bedroom (#6179)

Many people are put off when they first enter the Master Bedroom because of
that PESKY ALARM! You walk in, the alarm goes off, and all of a sudden you fedl like
an unwelcome intruder instead of a welcome guest. The effect is quite impressive.
But don’'t worry, you aren’'t irritating anyone; it's a puzzle. This puzzle is hard until
you figure out that you need to use objects from other rooms besides the Master
Bedroom, medium hard until you identify the objects needed to solve it (hint,
everything you need is in the suite of rooms connected to the master bedroom), and
fairly easy once you actually get going on it. Once you solve the puzzle, the alarm
will no longer go off when you enter the room.

To get to the master bedroom, go east from the entrance hall twice, then south.
The Deck (#349)
The deck connects several rooms at the back of the main part of the house.

The Rube Goldberg contraption, which resides on the deck, is a fine bit of
building, in that any member of the community is free to add to it, and many have.

Interesting Places 181

At the easiest level, you can pull the lever to see a very wide variety of actions. Or
you can enter it and learn how to add your own bit of geniusto it.

The instructions are a bit hard to follow, but it helps to think of a “motion” not
as a motion so much as a state the machine isin. Interactions take the machine from
one state to another. Motions have names (and sometimes descriptions), interactions
have names and descriptions. Only the descriptions of interactions are actually
presented when someone pulls the lever.

One way to get your bearings before adding a motion or interaction is to enter
the machine and type noti ons. Select a motion from the list (bal | in passages
for example), and typeshow <noti on>. Look at the list of preceding and following
interactions, choose a following interaction, and type show <foll ow ng
interaction>. Look at the“from notion” and “to notion”, and show the “t o

noti on”. By repeating this sequence, you can follow one possible output path of the
machine.

Then, of course, you'll want to add your own. Simplest is to skip creating your
own motion, and just create an interaction connecting two existing motions in a new
way. Note that the contraption’s parsing code doesn’t seem to like quotation marks,
which is contrary to the way coding conventions have evolved since the contraption
was made. Here's a simple sequence for adding an interaction connecting two
existing motions:

create interaction nanmed quickstop fromball in passages to
finish

descri be quickstop as The ball shunts over into a
catapult.*The catapult sends the ball flying across the
contraption where it hits a large red button | abel ed

' EMERGENCY STOP' .

(The asterisk, “ *” is part of the syntax, and makes things appear on separate
lines.)

Then you'll want to see your interaction actually happen, so type exi t and start
pulling the lever on the machine relentlessly. The charm of the contraption is that it
has so many motions and interactions. The frustration is that because there are so
many, yours may take forever to come up. The contraption’s documentation says
that it tries to show each interaction with equal probability, given the limitations of
the connections. In redity, there are some that seem to come up over and over
again, and it starts to get tedious. But just when you get exasperated, some never-
before-seen action occurs which isreally funny. That’slife, | guess.

(Author’s note: | try to test everything that | document. | haven’t yet seen my
interaction, and I’ ve pulled the lever alot of times. Y our mileage may vary.)

To get to the deck, go south from the master bedroom, south from the half-bath
in the master bedroom suite, or southeast from the living room.

182 Interesting Places

The Hot Tub Deck (#385)

The Hot Tub Deck connects the deck to the hot tub, and provides access to the
tub control room and to the roof (viatherose trellis).

Nowadays, a room such as the hot tub would probably be implemented as a
portable room (with exterior and interior descriptions), albeit one that would be
locked in place. The technology of portable rooms probably didn’'t exist at the time
that the hot tub deck and hot tub were built, and access to the hot tub was
implemented using a combination of verbs on the room and regular exits, in this case
one with several aliases. You can enter the hot tub by typing any of the following:
enter, enter tub, enter hot tub, enter hottub, swim dive, tub,
hot t ub, hot -t ub.

Y ou can cover and uncover the hot tub, and can push people into it (though this
is considered nasty by some).

The rose trellis is one of the neatest exits that | know of. You can ascend either

by typing clinb trellis or up. The exit up connects, eventually, to the roof of
Lambda's Den. En route, you'll pass by the window of Lambda' s Den, and you can

peer in w ndowandtap on w ndow. Although the occupants of Lambda s Den
are rarely logged on, when they are they can and do notice when you peer and/or tap
on the window. When you do get to the roof, you can try your hand at bungee
jumping (The folksin the hot tub below will get to see your performance.)

To get to the hot tub deck, go east from the deck.

The Hot Tub (#388)

The Hot Tub has long been a popular aternative to the living room as a
gathering place. Boring conversation in the living room? Try the hot tub. In earlier
days, one might have expected conversation in the hot tub to tend a bit more to the
erotic than that of the living room, though living room habitues have never exactly
been thought of as prudish. In more recent times, however, venues with more overt
names (e.g. “Sensual Respites” and “The Sex Room”) have tried to take over that
function, with some success. This author still raises an eyebrow or two if spotted in
the hot tub, however, so perhaps the magic hasn’t totally worn off.

You can check the current temperature of the water by looking at the
thermometer. (If it isn't to your satisfaction, find the tub control room and adjust
the thermostat.)

Y ou can splash another person (or thing), and you can dunk another person (or
thing). You can push |eft button to turn the light off and on, and you can push
ri ght button to turn the bubbling jets on or off. Surprisingly, perhaps, you can
cover and uncover the tub from within, as well.

The hot tub bar was a later addition, and is another example of food and drink,
different from those obtainable in the kitchen. Typing dri nk <anyt hi ng> from
bar will get you a drink (of sorts). You will be prompted for alcoholic vs. non-

Interesting Places 183

alcoholic. You can also type eat <anyt hi ng> from bar to obtain more substantial
refreshment.

To get to the hot tub, type ent er t ub from the hot tub deck.

The Tub Control Room (#491)

The most obvious object in this room is the thermostat for the hot tub. The
minimum setting is 80, and the maximum is 120. As with real hot tubs, there is a
significant delay between resetting the thermostat and the water actually reaching
the desired temperature. Just as in the offline world, players here will reliably try to
over-boost or under-boost the temperature setting in an effort to make the tub heat
up or cool down faster. This routinely backfires, of course, in that the tub doesn’'t
heat up or cool down any faster, and, hours later, the tub reaches an undesirably
warm or cool temperature. But people will be people, after all, and this great bit of
MOO-coding catches us at it red-handed.

I can’t imagine why anyone would want to do such a thing, but you can pull the
plug (typepul | pl ug) and drain the tub. If it’s already unplugged, you can plug it
back up again (type push pl ug or pl ug hol e).

The description of this room changes, depending on whether the tub light is on
or off, whether the bubbling jets are on or off, and whether the tub is empty or full.

The radio transmitter that is there appears to be a relic of a long ago
programming project which never really came to much. To use it, you have to find
one of its counterparts and a partner. Each of you has to hold the radio, and then
you can talk back and forth on it. The LambdaM OO Programmers Reference Manual
makes a references to this radio.

There is an unmarked exit south from this room, which leads you to a dark,
damp tunnel. From there you can get to the pool deck, or explore the tunnel further
on to the west, which leads to an RPG area. (LambdaMOO has its roots in the
Dungeons and Dragons tradition, and the RPG (Role Playing Game) is our version of
that. You get initiated, train, look for treasure, and fight monsters and such. | am
not an RPG player myself, and will not be documenting the RPG. For those who are
interested: From the entrance hall, go east, east, up, east, east, south, east, and then
north. You should be in the initiation chamber (#88). After initiation, go back
(south) to the atrium and read the Tome of Lore that isthere.)

To get to the tub control room, proceed down from the hot tub deck.

The Pool Deck (#1425)

This is another bit of quite old building, done in an older style. The description

refers to some screws, but exam screws, the logical inquiry, nets the response, |
see no "screws" here. How frustrating. You can, however, try unscrew
screws or screw screws, depending on their state, and you will get a response that

184 Interesting Places

makes a bit more sense. You guessed it, it's a puzzle. The crux of the puzzle is this:
Y ou need to find the appropriate tool (hint, it's a screwdriver). If you are holding it,
then unscrewing the screws will reveal an underground tunndl that leads to an RPG
area. It'sahard puzzlein that you have to go pretty far afield to find the screwdriver,
but not an impossible puzzle in that the screwdriver is in a place where you might
expect to find one.

There is a sign, with a glass bottle attached. There is nothing special about the
bottle (that | can find). It's just there for illustrative purposes. The sign, however,
gives us another glimpse of human nature at its best. Those actions it prohibits are
actions the room knows about, and I'll leave it at that.

To enter the pool, type enter pool. Better: Go up, and try a dive from the
diving board. Not to be missed: Go up twice, and try the high dive.

To get to the pool deck, go south from the deck.

The Pool (#1428)

The pool is bigger than it looks, and allows for all sorts of shenanigans. Go there
with several friends.

As with the hot tub, you can splash and dunk people.

There are avariety of pool toys, including alily pad, an air mattress, a shark cage,
a hypercube tub toy, a green plastic snake, a beach ball, and a fishing boat. In
general, the following apply:

float on <pool toy>

| eave <pool toy>

push <anyone> from pool toy

defl ate <pool toy> [with or without someone on it]
inflate <pool toy>

Different pool toys have different capacities, so different things happen if more
than one person tries to float on one. One of them has a special deflate verb. The
fishing boat has extra programming: You can fish from it. Surprising, in a
chlorinated pool, no? Reminder: Sometimes you have to be patient when fishing.

The pool sweep is a fine contraption. Its messages are triggered by noises in the
pool, so if you just hang out there by yourself, it won't do much, but if there's a pool
party going on, you’'ll hear more from it. If you don’t want to hear from it, you can
gag it (different from @ag). If you try to take it, there are two different results,
depending on whether it is gagged or not.

There is an interesting variable exit from the pool. Typing di ve will take you
down to the bottom, and from there, who knows?

To get to the pool, type swi mor j unp from the pool deck.

Interesting Places 185

Hedge M aze (#17682)

For the longest time, | thought the hedge maze was just another bit of
atmospheric tiny scenery: all that hedgework, and nothing else. For al | knew, it was
a clever bit of programming to take you around in convoluted and never-ending
loops, end of story. Later on someone pointed out that it’s a puzzle. One of the
things that | think holds people back from tackling puzzles is not knowing what
they’'re letting themselves in for. So, without giving away the game, here are a few

facts about the hedge maze that might help you to decide whether to tackle it and
when.

It s finite, and fixed, which isto say that its layout is constant: The arrangement
of rooms and exits will be the same tomorrow asit istoday.

All exits are symmetric: If you go southeast, then northwest will take you back
to where you just were.

There’'sagoal: When you've reached it, you’ll know.

Scope: When | was working on it, the questions that kept coming to mind were,
“How bigis this thing, anyway?’ and, later, “Is there an end?’ It’s pretty big. When
| finally decided to solve it, it took me about two hours, spread over two sessions.
Compulsive person that | am, | then mapped out the whole thing on a blotter-sized
piece of graph paper. There are 199 locations within it. The shortest path to the
middle is 83 steps. The maze entrance is its northwestern-most point.

It's clever. If you teleport out, then teleport back in, it takes you back to the
place where you left off. This may or may not be to your liking. If not, you can go
back to the pool deck and start at the entrance again.

Historical note: It's one room, cleverly programmed to seem like lots of separate
rooms. This sort of thing later became known as a multi-room. At one time, players
were limited to a finite number of objects, rather than a finite amount of byte-based
quota, and a multi-room was one way to simulate having more objects (for rooms
and exits connecting them) than you actually had. After the transition to byte-based
quota, multi-rooms were strongly discouraged — better to have a discrete number of
actual rooms with real exits between them.

To get to the hedge maze, go southeast from the pool deck.

The Kitchen Patio (#1467)

The Kitchen Patio is mostly a linking room between the kitchen and the yard,
but it does have a couple of interactive objects such as you might find, well, on a
kitchen patio. These are Mazer’s cricket ball, tennis ball, and Ball-buddy. Here's a
short primer on playing a simple game of catch.

For the sake of discussion, let’ s use the tennis ball:

take tennis
throw tennis to buddy

<buddy catches the ball>

186 Interesting Places

<buddy throws the ball back to you>
catch tennis

The fancy part: You can embellish the messages that are displayed when you
throw or catch aball. The syntax islaid out fairly clearly (if not in alogical sequence)
when you examine the ball, but here are a couple of examples. Note, the message to
others prepends your name, so you have to omit that. Another note: The original
author (not the current owner) tried to be clever with pronoun substitution, but in
this reviewer’s opinion wound up making it somewhat more fussy and complicated.
For “throw” messages, indirect object pronouns refer to the catcher. For “catch”
messages, indirect object pronouns refer to the thrower:

teach tennis to throwwith "You lob % gently." and "gently
|l obs % toward % ."

teach tennis to catch with "You twirl, then catch."” and
"twirls around gracefully before catching it. 9% cheers
wildly."

show tenni s

unt each tennis to throwwth 1

unteach tennis to catch with 1

Ball-buddy is very handy for testing your messages. You have to put a "% ”
somewhere in your throw message (the one that others see) in order for Ball-buddy to
know it’ s for him, though.

To get to the kitchen patio, go south from the kitchen or northwest from the
pool deck.

The Yard (#2883)

Theyard is showing signs of neglect. It used to look like this:

The yard has carefully mani cured grass that snuggles up to
t he rosebushes to the east, and extends sout hward a ways
toward what appears to be a gazebo. Of to the west, the
yard becones less well tended. To the north is a sliding
gl ass door into the house.

Now it looks like this:

The yard has ankl e-high grass that turns to weeds next to
t he rosebushes to the east, and extends southward a ways
toward what appears to be an old gazebo. Of to the west,
the yard becomes even less well tended. To the north is a
crooked sliding glass door into the house.

Kilik and | were bored one day, and we decided between us that the house as a

whole seemed too static. We looked around for small ways for the house to evolve,
and we decided that maybe things would get dusty and fall into disrepair somewhat.
We hardly went on a rampage, but here and there around the house, in areas that

Interesting Places 187

one of us owns, or that are owned by someone whose stuff we have permission to
tweak, there are slight changes. The welcome poster in the living room becoming
slightly crooked from time to time is one example. Another is the condition of the
yard. Original descriptions of things that have changed are kept in the property
.description_OEM, so no original work has been destroyed.

So now the yard has ankle high grass. Unless you mow it. Now, our lawn
mower is quite a piece of work, too. It was programmed by Wintermute, who always
had very dark sense of humor (and view of life). If you start the lawnmower in the
“run” position instead of the “idle’ position, it will come straight at you and chop
you to bits. Being Wintermute's creation, it does the same thing even if you start it
in the “idle” position and then set it to “run”, though | could have sworn that once
upon atime there was away to mow the lawn safely. Either way, if you subsequently
return to the yard, you'll find aragged swath cut through the grass.

The frisbee is the original that inspired the Generic throwable and catchable
object with variable flight time, which in turn is the parent of Mazer’s cricket ball, the
tennis ball, and many others.

Kilik’ s Patented Fireworks Show was used to great effect on July 4, 1994. Y ou can
add fireworks of your own by making a kid of the generic fireworks (#7618) and
putting appropriate messages on it, then contributing it to the show. (A look at the
code suggests that an actual fireworks show would bomb, because the old sky-
watching FO no longer exists. So much for Kilik's and my plans for tame
obsolescence — things go to pot on their own. An enterprising programmer might
want to look into re-engineering it.)

To get to the yard, go west from the kitchen patio or south from the family
room.

Driveway (#6193)

The driveway is rather more littered than its owner would prefer, but is less
littered than it used to be, and therein liesits story, of history and technology.

Once upon a time, the driveway was owned by gru. Being a busy wizard at the
time, gru had gotten out of the habit of visiting the driveway, and, in the interim,
many others had gotten into the habit of leaving stuff there, and sometimes locking
stuff there. For in those days, O Best Beloved, the self-cleaning room was not in the
driveway’ s ancestral hierarchy.

One day gru and Yib (a young, upstart programmer) chanced to meet in the
driveway, and noticed that ALL KINDS OF CRUFT had accumulated there, some of
which gru had given permission to stay, but most of which he had not. gru and Yib
set to moving all the unwanted stuff out into the ether, unceremoniously stepping on
toes in the process. Once again the issue of object owners' rights (to keep their stuff
where they wanted) vs. a room owner’s right to determine what stayed and what
went reared its ugly head, though it wasn’'t exactly an issue over which the entire
MOO got up in arms. But those affected at the time cared very much, and became

Cross.

188 Interesting Places

gru realized that he wanted the driveway to be kept cleared of junk, and that he
didn’t have time to do the job himself. So he offered ownership of the driveway to
Yib, with the understanding that she would evict things and people from time to
time, and thus began Yib’s career as ayoung bugbear. (Today sheiswell known as an
old bugbear.)

Yib immediately turned her attention to the Foodmart shopping cart.
“Wait,” said gru, “that’sgenna’'s, and | promised her she could keep it here.”
“Oh,” said Yib. And it has been there ever since.

One day, Bartlebooth suggested to Yib that she create a magpie that would fly
around the M OO snitching things.

“Brilliant!” said Yib, “Now I’ll be able to keep the driveway clean without having
to go there all thetime.” And so shedid.

And that is the story of how Yib came to own the driveway, why it is littered
with a Foodmart shopping cart despite Yib's obsessive neatness, and how the black
magpie came to be.

The springboard is aimed at a second story window, and, if you start from the
driveway, it doesn't do much. The key is to find Xythian's apartment in the second
floor corridor, and jump out.

The MidNite-MOO is a tabloid newspaper. The copy in the driveway is a VR

interface to the *M dNi t e- MOO mailing list. If you try to read it but all the articles
have expired, you should make up an outrageously sleazy, slanderous story about
someone you know (or someone you don'’'t) and post it to *MM.

From time to time a sleek black limousine parks in the driveway. It will take you
to an area of the MOO known as Singles, and is an example of themely transition to
an area that is not part of the mansion and grounds proper. Frowned-upon in its
early days by the Establishment, Singles is a link to some well-known and visited
parts of the MOO, generally frequented by what the Old Guard think of as a Y ounger
Crowd.

The sometimes-shiny penny is another VR interface to another mailing list,
*penny.

The information center was added as an alternative for people who don’t or can’t
find their way to the library and MOOseum, by someone who considers those
locations to be too far away or too difficult to use, or both.

To get to the driveway, go north from the entrance hall.

ThelLibrary (#1670)

The library is a place that every player should know about. It is a place where
any player may place anything e considers to be of general interest.

One hallmark of the library is that it lists its contents in two columns. At the
beginning, items that players wished to park there were just listed individually, in
any order, higgledy-piggledy. A few years ago, ownership of the library was

Interesting Places 189

transferred to this author so that library materials might be presented in a somewhat
more organized way. It was an interesting endeavor.

My goals were two-fold: to make shelves, so that materials could be sorted into
categories, and to persuade all the owners of materials in the library to change their
items’ home from the library proper to the appropriate shelf. The diplomatic part
took far more effort than the programmatic.

The library now contains several shelves. To access an item, first look at a shelf
that interestsyou. Then take an item from that shelf. For example:

take Yib's Guide from Geography Shelf

Most items (though not all) have a“r ead” verb on them. You should examni ne
an item to see what obvious verbs are available. Some are portable rooms which you
can enter, for example.

Y ou needn’t worry about returning an item to a shelf — all are programmed, one
way or another, to return to the appropriate shelf eventually. Some will stay with
you for aslong as you are connected, others will return after a preset amount of time.

The library continues its origina policy of inclusion — anyone may place
something there. New items should be placed on the New Submissions Shelf. The
library’ s owner, any wizard, or any current member of the Architecture Review Board
may then catalog an item to an appropriate shelf. For more detailed information on
how that process works, copies of the library policy are on the New Submissions Shelf
and the Reference Shelf.

Other items of interest:

« If you stare at the strange painting, you will be transported somewhere el se.

* You can write a note for the bulletin board. Typelist bulletin board to see
the current notes that are on it.

» To access the ownership transfer station, type enter ots. Its purpose is to
transfer ownership of an item from one player to another.

e The helpful person finder is atwin of the onein the living room.

There are a variety of other rooms off the library that are also of interest: North
is the LambdaM OO academy, which has a robot that may teach you something about
programming. Northwest is the Law Section, which contains information about
ballots. Northeast is a map room — there you will find maps of various parts of the
MOO. West is the more informal library alcove, and up from there is the library
turret, one of several places where one may connect aroom, if desired.

To get to the library, go south from the linen closet, then east, then north.

The Map Room (#3002)

The Map Room was added on to the library when a bunch of us decided that the
old atlas that used to be on top of the mantel was just too out-of-date. At that time,
too, the old atlas was retired to the geography shelf in the library, and a new atlas was
put on the mantel in its stead.

190 Interesting Places

The map room has a nifty rooms database object, which you can use to look up a
room by its name. For example:

find mud westling pit in db
Feel free to borrow any map. The housekeeper will return it after you log off.
To get to the map room, go northeast from the library.

Library Alcove (#95512)

The library alcove was created when the library was reorganized, and is a less
formal space. One might repair to the alcove, for example, if one wished to converse
with a friend or acquaintance while according peace and quiet to those in the library
proper.

It is also a place for a more relaxed sort of reading. The Daily Whale is a
collection of cartoons written by Frand, from 13 March 1991 to 19 April 1994. There
is a stack of Lambda MoosPaper back issues, and the generic hard-core porn rag,
which will make your eyes bug out. “Walking Tours of LambdaM OO” is a pamphl et
rack, with the interesting feature that you can take a pamphlet from it and carry it
with you as you explore.

Sounding the enormous Chinese Gong will summon the Butler, whom you can
ask for a cup of tea

To get to the library alcove, go west from the library.

Top of theLibrary Turret and Black Hole (#69651)

From time to time people decide they need a break from the MOO, but
nonethel ess find themselves unable to stay away. Some ask awizard to @ewt them.
Some use the Russian Roulette pistol. A few jump off the Edge of the World. While it
is possible to write a verb to self-newt for any arbitrary duration of time (and there is
a note on the reference shelf of the library explaining how to do this), it is not
particularly convenient to do so, especially if one is not comfortable with
programming. At the top of the library turret, then, isablack hole. The black holeis
an interface to the self-newt process that is easy and convenient to use.

You can enter the black hole and leave it at will. You can enter the black hole

for a specified duration (e.g. enter black hole for 1 week). If you then
disconnect while till inside the black hole, you will be unable to log back on to the
MOO until the week (or whatever duration you specified) has passed. The duration
of on€e’'s self-newting is private, and players may also set their home to the black hole
and come and go as they please, obscuring who has self-newted and who simply
chooses to set eir home there. (Those who wish greater privacy in their self-newting
should set their home to the black hole, also, before disconnecting.)

To get to the top of the library turret, go up from the library alcove until you get
there.

Interesting Places 191

LambdaM OO Museum (#50827)

Like the library, the LambdaMOO Museum is another of our venerated
institutions. Inaugurated in July of 1992, for years it has been the resource of choice
for researching existing generics, player classes, feature objects, and room types.

Several years ago, the museum’s founder, thinking he was soon to lose net
access, offered ownership of the museum to a trusted friend, who, alas, declined,
citing other competing obligations. In the years since, the museum declined
somlewhat, suffering from a combination of fervent protectionism and benign
neglect.

In the spring of 1999, a new curator volunteered eir services, and, after some
negotiation was approved by the original curator. There are some new exhibits,
enhanced searching capabilities, and players may now catalog their own items for
display in the appropriate section. An equestrian statue of the original curator is said
to be in the works.

To get to the LambdaM OO Museum, go south from the library, east three times,
then north.

Negative M useum (#68493)

Tucked into a nook, far from the conventional museum, is a little gem of an
exhibit dedicated to the negative objects on the MOO. It's a long walk, but well
worth the trip. Starting from the entrance hall, proceed:

east to Corridor

south to Ground Floor Stairwell
up to First Floor Stairwell

west to First Floor Corridor
south to First Floor Corridor
east to First Floor Corridor
north to First Floor Corridor
north to First Floor Corridor (Boardroom)
east to East Corridor

east to East Corridor

east to Corner

north to North Corridor

north to North Corridor

north to North Corridor

east to the Negative Museum

192 Interesting Places

Underground Arcade (#16471)

This room is the hub of an underground complex of shops. Here you will find
Sammy the clown, who will give you a balloon if you ask, and a directory of the
various shops. The directory itself is something of a historical document — some of
the shops listed have long since closed, their entries in the directory the only record
of their bygone existence.

The arcade itself has three wings, east, north, and west.

To get to the underground arcade, go east from the entrance hall, south into the
stairwell, down two levels, then north.

Xorbon’s Floral Shoppe (#33958)

Xorbon’'sisthe place to get flowers for your sweetie, or someone you just happen
to like. The shop itself is a delightful venue — ordering flowers is easy, and delivery is
prompt and polite. Be sure to get there early on Vaentines Day, though, as they’ve
been known to sell out.

If you are lucky enough to receive a bouquet, be sure to water your flowers from
time to time to keep them fresh and healthy.

To get to Xorbon's, go east from the underground arcade |obby, then north.

The Pizza Parlor (#15229)

Mama Bungweisi’s is a great place to go and party with friends. You can order
pizza, share it with your friends, get a soda, and, if you're clever, get a quarter from
the change machine and play your favorite tunes on the antiquated jukebox that is
there.

The parlor is animated with a variety of themely messages that give it a certain
ambiance all its own. Plus, they deliver!

To get to the pizza parlor, go east from the underground arcade |obby, then
northeast.

Tasks'n Frobbin’s (#17499)

After your visit to Mama Bungweisi’s, be sure to stop in next door at Tasks 'n
Frobbin’s for an ice cream cone. Order your cone at the counter, then top it with any
of the twenty-five million eight hundred seventy-four thousand one hundred thirty-
three flavors of ice cream that they have there. Read the menu to see the pricelist.

Interesting Places 193

(For those who may not know, the name of this establishment is a pun on an
American ice cream store franchise named “Baskin Robbins’.)

To get to Tasks’'n Frobbin’s, go southwest from the pizza parlor, then southeast.

Mud Wrestling Pit (#36017)

The mud wrestling pit is best enjoyed with a party of two or more people, and is
a great place to let loose and let fly. You can throw mud, muck, goo, or just about
anything else at someone — the clever part is that whatever you throw is then
integrated into your target’s description. You can also westl e <soneone>. You
can take a refreshing shower as often as you like, too (which shower attendant you
get depends on your gender).

The mud wrestling pit was originally authored by gru. Later, gru went into a
period of seclusion, recycling much of what he owned, including the mud wrestling
pit and Buddy (a robot, beloved by some). gru later graciously made the code
available again, at this author’ s request, and | was able to reconstruct it.

To get to the mud wrestling pit, go north from the lobby of the underground
arcade, then northeast.

The Garage (#39)

The main thing about a garage is, you go there and rummage around for things,
and so it iswith ours.

A room owner can designate certain objects or players as residents of a room, and
can write programming on aroom that treats residents and non-residents differently.

In this case, if an object has been designated as a resident, it will be visible,
whereas if you drop an object that is not a resident, it will not be visible.
Furthermore (and thisis the good part) you can search for items that are residents.

You might find (or search for) a shipping crate. The shipping crate contains a
bunch of motorcycle parts, and thisis a puzzle by ydud | found it difficult, but then,
I know very little about motorcycles. (Hint: Several parts need to be connected to
more than one thing.) Another useful thing you might search for in the garage is a
tool box and/or certain tools.

To get to the garage, go north from the housekeeper’ s quarters.

A Decent Piece of Turf (#24641)

A Decent Piece of Turf is the hub of and gateway to the older part of the
mansion grounds. It was created and landscaped by The Great Bartlebooth. The
hallmark of Bartlebooth’'s work is that each object is characterized by a deliberate,
defining, idiosyncratic flaw. Nothing of his suffersfrom bland perfection. In the case

194 Interesting Places

of a decent piece of turf, “. .. your eyes feast on the thick grass, worthy

of the gardens at Kew, except for an ugly weed stunp, which is an
unsi ghtly reninder of everything the turf denies.” Thestumpitselfisa
wonderful exercise for would-be gardeners. You can dig the stump, but that leaves a
divot, which must then be filled, which leaves a bald patch, which must then be
watered. To your horror, aweed sprouts!

The topiary bush is another excellent example of Bartlebooth’s work. You can
clip the top, middle, and bottom to resemble a human, bird, or animal, and each
combination yields a new creature, each more fantastic than the last. (The centaur is
my personal favorite.)

The reflecting pool serves as a sundial; the number of fat happy goldfish is the
number of connected players.

The rose tree is an example of Carrot’swork at its least baroque, and that is still
pretty baroque. You can pick arose from the tree and take it with you. The colors
are most unusual. Each rose lasts 48 hours.

The flag isawind sock (in disguise), a requirement for helicopters to land.
To get to adecent piece of turf, go south from the yard.

Gazebo (#52061)

The gazebo is not, in and of itself, a heavily programmed or interactive place, yet
over the years players have gone there to interact. In its heyday, it was a favored
trysting place. (Its owner used to find abandoned articles of clothing there on afairly
regular basis.) Delightfully described, it was one of the first publicly connected rooms
with integrated seats, and it has a charming array of them.

The small table there has a conch shell on it. It is sometimes said that listening
to one will transport you to faraway places.

To get to the gazebo, go to a decent piece of turf, then typeent er gazebo.

Gazebo Roof (#70379)

From the top of the gazebo roof, you can see in each of the four cardina
compass-point directions. The weather vane is a VR way of seeing what the current
lagis.

The gazebo roof is aso where the black magpie makes its nest, hoarding all the
various things it has scavenged from around the MOO. There's all sorts of random
stuff in there.

To get to the gazebo roof, go to a decent piece of turf, then type cli nb
trellis.

Interesting Places 195

M akeshift Cafe (#39999)

In the early middle days of LambdaM OO, when the living room, according to
some, had started to change its makeup, the so-called Power Elite chose to gather at
the Makeshift Cafe on the grounds behind the house. There was a partial overlap
between this crowd and the gang at JaysHouseM OO, which is how the JAY SHOUSE
picturephone came to be there. It is said that it can sometimes allow communication
between players on the two MOOs, but that it depends on a switch at JaysHouseM OO
bei nkg in the “on” position. This author has never seen the picturephone actually
work.

The RL is owned by Doug. Doug wrote to me, and told me that it's called “a RL”
rather than “an RL” because he has always asserted that the proper pronunciation of
“RL” is“real life’. Legend hasit that on occasion it would somehow boot wizards. It
has an interesting message if you try to take it.

The human cannon is a delightful piece of work, and behaves slightly differently
depending on whether zero, one, or more people are inside when it’ s fired.

The cheap number puzzle works just about exactly as you might expect.

The Lambda MOOsPaper is a vestige of a bygone era. At one time it was owned
by waffle, and was taken seriousy as a loca compendium of online and offline
events. There have been occasional efforts to revive it, but none has succeeded to
date.

To get to the makeshift cafe, go west from a decent piece of turf.

The Underground Waterfall (#15413)

The Underground Waterfall is one of the loveliest places on the MOO that |
know of, and a wonderful example of how much can be done with a room without
doing any actual programming. Though it has been criticized for its lack of verbs, it
isone of the very best pieces of Tiny Scenery extant.

The room isrich with details. You can look at any of the trees, the undergrowth,
the clearing, the pooal, the edge (of the pool), the water, the moss-covered rocks, the
waterfall, the bank, the pond, the stream, the foliage, the small wooden sign, the
plants, down (at the lush grass), at the break in the foliage to the south. (Note, if you
have Carrot’s Viewing Feature (#46278), you can type @lvi ew and words in the
description for which there is a corresponding detail will appear in upper case.)

The available seats are the pool, the mossy rocks, edge of the waterfall, the bank
of the pool, the stepping stones, and the grass.

The surrounding area has long been known as “The Land Down Under”. There
isamap of the land down under in the atlas on the mantel in the living room.

To get to the underground waterfall, go to a decent piece of turf, enter the
gazebo, then go down through the trap door.

196 Interesting Places

West of the Yard (#3942)

West of the Yard used to be called “West of Gardens’, but that was back when
the gardens existed only as a mere mention in the description of the living room.
This location’s owner, Jon_BonJarleycorn, is something of a historical figure at
LambdaM OO, but was nontheless reaped in his time and his posessions recycled. A
hue and cry ensued, and the wizards restored not only the player character, but
nearly all his original objects (many of them rooms that were part of the grounds)
with their original object numbers. In the course of this fiasco and its subsequent
resolution, the chapel, which used to be found in West of Gardens (now West of the
Yard), got lost in the shuffle. It has since been found and restored to its former
location.

The chapel was originally programmed by gru, who later bequeathed it to Jool,
who loaned it to Yib, who spruced it up a bit and then gave it back to Jool. It was
once a popular venue for MOOers who wanted to get married in VR. Inside the
chapel, you can sit, stand, kneel, prostrate, levitate, pray, meditate, shout, whine,
flame, chant, cower, pout, contemplate, sigh, confess, float, plead, relax, officiate,
sermonize, listen, recline, rant, wait, idle, sleep, lag, respond, nap, or genuflect (as
your inclinations dictate). These are not mere emotes. The chapel’s description is
cleverly programmed to show its occupants sitting and praying, standing and
shouting, chanting, floating, etc. (as their inclinations dictate). The chaplain is a
delightful instance of an old bit of MOO technology called a monitor. Akin to the
globe in the entrance hall (where anyone may add or delete a location), anyone may
add or erase a message from the chaplain’s repertoire. The nice thing is that this
chaplain is quiet while others are speaking, but offers words of comfort and wisdom
during moments that would otherwise be silent.

To get to west of the yard, go west from the yard, or north from the makeshift
cafe.

Base of Large Oak Tree (#2834)

Lambda house is graced with a magnificent old oak tree, which you can climb.
Climbing trees isinherently fun, and there is a good bit of casual exploring to do near
the base of the tree and up among its branches. There is a tree house, whose rope
ladder you can raise and lower. Further up, at the top of the tree, there is an acorn.
Y ou can enter the acorn, and there is a puzzle. Figuring out the nature of the puzzle
is part of the puzzle (hint, examine everything to get started). | haven't solved this
puzzle yet, but it has gotten good reviews from others.

If you get arash of poison ivy, calamine lotion is said to help. (Try the first aid
kit in the half bath near the master bathroom.)

To get to the base of the large oak tree, go south from the patio, or east from the
decent piece of turf.

Interesting Places 197

Tree Root System and Stone God Puzzle (#18691)

The Stone God Puzzle is a fine one. Here are a few hints, just to help you get
started:
* Useapencil and paper.

e Get some coins or buttons or jelly beans to use as tokens, to place and move on
the paper.

* Most sandstone walls can be pushed. The syntax is push <direction>, eg.
push east.

* No granite walls can be pushed, but you can try.

* You can tap on awall (eg.tap on north) to see if a sandstone wall can be
pushed.

To get to the tree root system, go southeast from the base of the large oak tree
(yes, you have to endure the brambles), then enter tree, then down, then north.

Landing Site (#5468)

The landing site was LambdaM OO’ s early concession to those who insisted on a
space theme, and over the years it has served a variety of UFOs and other vessels.
Today it is home to helicopter NOO1LM, which was my first programming project
there.

From outside, you can preflight it (always a prudent idea), and enter it. From
inside, there are a variety of options:

start | ook hobbs

hover | ook chart

fly scrutinize chart
faster | and

sl ower | and <l ocati on>

hi gher overfly <location>

| ower wave

| ook placard stop

| ook out shut down

| ook down exi t/junp/ di sentbark

The helicopter’s description and behavior change depending on whether it's
running or stopped, parked, hovering, or in flight.

If you land on the asphalt roof, they’'ll hear the rumble of the engine in the
living room. Some other locations also broadcast helicopter arrivals and departures
to neighboring rooms.

There are appropriate messages for spectators outside the helicopter when it
takes off, flies overhead, and lands. These messages also differ depending on how

198 Interesting Places

high the helicopter is flying. If you are at the landing site when someone crashes it,
you get to see ateam of engineerstruck it in and put it back together.

It knows the difference between a low-altitude hover (in the location you took
off from) and a high-altitude-hover (in the sky, over alocation).

If you fly aM OO helicopter, you get a souvenir pair of pilot’swings. If you jump
out of the helicopter while it’ s airborne, the pin turnsinto alittle anvil with wings. If
you crash, it also changes, depending on where you end up. The pins last 24 hours.
(What do you expect from a cheap souvenir?)

As you overfly locations, people on the ground are notified. (In the early testing
stages, not knowing any better, | flew back and forth, constantly, over the Makeshift
Cafe, where WhiteRabbit was hanging out, and really got on his Bad List. It took me
years to redeem myself.) Aircraft cast shadows, which are actual objects that are
moved to the various locations the aircraft overfly. This enables people on the
ground to wave to peoplein the aircraft (typewave at hel i copt er for example).

Helicopters can only be landed at catalogued outdoor rooms that have wind
socks. This is to prevent people from landing helicopters in the living room and

other indoor locations.

To get to the landing site, go west from the yard through West of the Y ard to the
meadow, then north.

Hell (#19232)

Hell, nowadays, just isn’'t the place it used to be, and it is included here mostly
for historical interest. Owned by Wintermute, it has been neglected for years.

Once upon a time, one was pelted with a torrent of particularly offensive spam
immediately upon arrival. Now, it is a much quieter place. Once upon a time,
trapdoor was the verb of choice to be used on the hapless guest: A trap door
opened up underneath em, and Boom! e was sent straight to hell. Now, guests are
sent to the kitchen to fetch cookies or tea.

When | was building the MOO helicopter, “Ooh! Can | crash it?’ was perhaps
the most frequently asked question. | didn't want to do it. (In point of fact,
helicopters are quite capable of gliding to the ground and landing safely in the event
of an engine failure, and having worked so hard to make it realistic in other ways, |
was not pleased at this request. Furthermore, | was stymied as to how | was going to
depict a helicopter crash in ameaningful way.) Finally | caved in, though, and added
the code. And | sent all the helicopter’s occupants straight to hell, without giving
;cherr|1 thehsatisfaction of actually seeing the helicopter’ s mangled remains, and got the

ast laugh.

The road to hell is paved with good intentions. To get there on LambdaM OO,
however, you must either crash a helicopter or take the elevator.

Interesting Places 199

Heaven (#59714)

Heaven exists because Hell exists. After sending countless players to hell, | got
bored, and wanted to add a bit of variety to the “crash experience’”. So | created
heaven as an alternative, and randomized crash victims fates. There's nothing
inherently interactive about the place — just a variety of messages that represent all
the best things | can imagine.

Then it seemed only right to connect it, so that people wouldn’t have to break
the VR and teleport out, so | did that, too.

Bartlebooth said, “Heaven should be hard to get into: Make it a puzzle!” So |
did. In order to walk in through the Pearly Gates, you have to have the key, which is
“hidden in plain sight” somewhere in the main house.

I’ s hard to get into Heaven.

Open Field (#58923)

The open field is a very early example of Klaatu’s difficult-to-use but nonethel ess
brilliantly-conceived seasonal animated room. The room’s description and
animation messages change from day to night and in accordance with the seasons.
It's a wonderful place for bird watching and star gazing, with different birds during
the day and different constellations during the night each month of the year.

It is also the mooring place for three majestic hot air balloons, scarlet red, royal
blue, and emerald green.

To get to the open field, go south from the decent piece of turf.

Formal Gardens (#59102)

Shortly after my first substantial quota grant, that rascal Carrot paged me that |
should make a giant piece of Tiny Scenery, “... because you can.” This was redly a
very startling suggestion, because Carrot was an ARB member at the time (and this
was back when ARB members were appointed rather than elected), and Tiny Scenery
was highly frowned upon. But | was new, and eager to please, and so | set out to
make the very best piece of Tiny Scenery | possibly could.

Very little of what now lies behind the house existed at that point; in fact, yduJ
had posted to a public list that there was nothing south of the pool yet and that new
building there would be welcome. Since the description of the living room
mentioned a view of “the gardens’ through the windows to the south, and since |
had gone looking for them in vain, | decided that that would be my project. In
addition, my programming buddy Klaatu had recently finished his generic seasonal
animated room. | was the only one who really knew about it, and | resolved to
showcase it. The formal gardens have a base description, plus a coda that changes
each month and between day and night, plus animation messages that change each

200 Interesting Places

month and between day and night. (The prose is about as flowery as you can get.
I’m somewhat self-conscious about it today, but that’s the way it goes.)

Meanwhile, Greene, one of the more flamboyant M OOQOers of the day, had made
a jungle, connected a room named “Brazil” to that, and asked that it be connected
south of the pool deck. Without a finished project to present, | was pre-empted, to
my great consternation.

I continued working on it anyway, €levating it from “mere” Tiny Scenery to
making it so that you could pick flowers there and actually have an object to take
away — creating objects on the fly was my great craze at the time. It’s a little-known
fact, by the way, that you don’'t have to take pot luck with pi ck flower. If you
want a single white rose, you can typesel ect a single white rose and get one.

Then came the problem of where to connect it, since south of the pool was
TAKEN (1#$%&*). Bartlebooth and | discussed it, and decided to connect it to the
open field with a bit of woods in between as a buffer, and so the formal gardens were
adistant treasure (relatively speaking) for quite awhile.

Eventually, Greene stopped connecting. | waited until the day she was eligible
for reaping, and then asked to connect the formal gardens south of the pool when
Green€' s jungle was eventually recycled. Thus the formal gardens came to be in their
current location (with the arbor in between as a sort of transition area). Then | had
to reconcile the geography at the formal gardens original location, which is how the
ruined garden came to be in that spot.

Much later, | was telling this story to a friend, who asked me, “Do you know
what’ s actually behind the house IRL?”

“What?’ | asked.
“A jungle,” he said.
Go figure.

To get to the formal gardens, go south from the pool deck to the arbor, then
south again.

Caretaker’s Cottage (#72097)

The caretaker’s cottage, nestled snugly in the formal gardens, is a splendid
example of Bartlebooth’s genius for interior design. The fireplace and the antler chair
are especially well described.

Aswork on this room evolved, it came to be something of a nexus room, meaning
that it is aroom from which you can connect to all sorts of other places. Historically,
the ARB has frowned on nexus rooms per se, calling them unthemely. In thisroom’s
defense, however, | would point out that the objective was less to provide a jumping
off point to so many places than to showcase various ways of getting around.

Thefireplace is a child of the fireplace that’sin the living room. To useit, type:
enter fireplace

Interesting Places 201

then:
pul |l chain

There will be some grinding of gears, and then the fireplace will turn to face a
new room. Any room containing a child of the living room fireplace (#43212) is
automatically added to the rooms you can explore this way. Y ou can open and close
the fireplace in any room. If the fireplace is closed, you can’'t enter it, and people
can’t come out. (Words to the wise, if you happen to have one in a room that’s
intended to be private.)

.. On the north wall hangs a painting. Thisisnot just any painting, but a
kid of the generic “ Trump” portal. (Thisisan allusion to the “Amber” series by Roger

Zelazny.) If you stare at it, you will be transported to the location of another portal
to which this oneis linked:

On the south wall is a brass panel, with a row of buttons on
it. To seethe placesto which the panel can transport you, type:

press list on panel

On the antler table are a snow globe and a conch shell. The shell will take you
to the beach if you first take it from the table and then listen to it. The snow globe
will take you to avariety of placesif you take it from the table and then shake it.

To get to the caretaker’ s cottage, go southwest from the formal gardens.

Petting Zoo (#74291)

If you look east from the formal gardens, you will catch sight of an elephant!
The Petting Zoo was originally authored by my friend Lamont_Cranston (gone but
not forgotten). There you will find a variety of animals, some of which can be petted
and some of which can’t. You'll also find a machine with birdseed in it, and you can
feed that to the parrot, or try to feed it to the other animals. To the southeast is a
storage shed with other kinds of food for the other animals.

The timing of severa of the messages seems to be a bit off — the parrot greets you
upon arrival, but there’s a delay, and likewise after you depart — but the charm of the
rest of the programming makes up for this.

Each animal has its favorite food, but most of the animals also have fun
messages if you try to feed them the wrong kind of food. You can also try to feed
playersto the different animals, with varying results.

The parrot is a parody of the living room’'s cockatoo. | dimly recall that there
used to be an ongoing repartee between the parrot and the lion, but maybe the
room’'s parent has been changed by the new owner, or something, because
unfortunately those messages that | remember seem to be gone. Going to the zoo isa
fun outing, even so.

To get to the petting zoo, go east from the formal gardens.

202 Interesting Places

Forest (near the Open Field) (#52061)

When | wasn’'t able to get my first choice connection for the formal gardens,
south of the pool, | looked around for a place to put them, and decided to put them
further out on the vast grounds of the mansion. Putting the gardens immediately
adjacent to the open field just didn’t feel quite right, so | added a patch of woods
between the two, with an idyllic description and a few animated messages for
atmosphere. Later, Bartlebooth added an oak tree, on which people can (and do)
carve their initials and short messages, “Y LOVES B” being atypical example.

The several parts that make up this particular forest work as expansion pieces, so
that different locations don’t have to exist cheek by jowl, but rather can have the
feeling of a bit more space between them. The general layout is that each segment of
the woods has a path that leads either back towards the house or further into the
woods, plus one other connection, so that it’s difficult to get lost. The first segment
of woods (near the open field), being the head of the trail, is an exception, having the
open field to its west, a dense thicket to the east, and base of large oak tree to the
northeast. The path through the woods continues to the southeast.

There's a rabbit that hops through the woods and environs, as well. A certain
dog used to love to chase rabbits, and this one was made for him to chase on the
MOO. Anyone can chase the rabbit. It’s shy, so trying to pet it or pick it up may or
may not result in success. (It’s not a puzzle, by the way. Just a shy rabbit.)

To get to the forest near the open field, go east from the open field, or southwest
from the base of large oak tree.

Ruined Garden (#66623)

When the person who owned the jungle south of the pool was finally reaped
and | was permitted to place the formal gardens there (at long last!) the question
arose as to what to do about the gardens previous site. Bartlebooth and |
brainstormed a bit and decided that what should be in that place was aformal garden
which had been allowed to go to ruin. There are many parallels to the original
formal gardens — the description and animation messages change with the seasons
and between day and night. The mood is rather sinister by day, but pleasant and
cheerful at night. Asin the formal gardens, you can pick flowers, but these are wild
flowers with names like “nettleleaf horsemint”, “creeping charlie”, and “orange
sneezeweed” .

There is an urn in the ruined garden, repository for a couple of mementos — a
handkerchief embroidered with the initial of the beholder, and a pistol, with which

players have been known to play Russian Roulette. The loser is @ewt ed for an
interval of between two and six days.

Around the time that the ruined garden was being, well, ruined, there was also
agitation afoot for the wizards to document in some way players who were reaped.
What had been happening was that the only notice one got that someone was no
longer with us was a message from the login watcher that some object number was
no longer avalid player, but no good way to tell who it had been. Thus began what |

Interesting Places 203

came to think of asthe Great Death Project. People had requested a graveyard with a
headstone giving information about every reaped player. This turns out not to be
practical, because there are many, many people who request a character, log on just
once or only a few times, and then never return. They are reaped to save database
space, and erecting stones in their memory would defeat the purpose. It was finally
agreed that gravestones would be erected for some players, and the ruined garden is
where those stones repose. (The Tomb of the Unknown MOOers is for those who do
not get a stone of their own.) The gravestones come in a variety of styles, and age
(very slowly) over the course of time. Each has the name, object number, and first
and last connection dates of a player, plus an epitaph. One can also place objects on
the stones — a bouquet of wild flowers, for example.

If you are in the garden at just the right moment, you can actually witness the
undertaker and his assistant carrying out their dolorous task.

To get to the ruined garden, go southeast from the forest near the open field,
then south.

Undertaker’s Cottage (#101792)

The undertaker’s cottage and its contents make up the second part of The Great
Death Project. The problem at hand was to find a way to record the departures of
reaped and MOOQicided players without clogging up the database unduly. This was
accomplished in a couple of ways. First, the mailing list *obi t uari es was created,
where reaped players names, aliases, and numbers are posted. Unlike most mailing
lists which expire after 30 days, this one expires after three days, which approximates
how long obituaries run in many newspapers. Second, there is a family bible, in
which “deaths’ are recorded. The family bible is on the mantel of the fireplace in the
undertaker’s cottage (type t ake bible from mantel). One can look up recently
departed players by name (though not by aias) or by object number. This
information is kept for 40 days and 40 nights, so that if someone doesn’'t log on soon
enough to catch a posting to *obi t s, one can look someone up in the family bible
and find out who the “missing” object number used to be. Last, there is an epitaph
registry, in which one may record an epitaph for someone. (Note, this must be done
before the subject’s demise.) The presence of an epitaph in the registry is what causes
a player to get a headstone in the ruined garden if that player is ever reaped, the idea
being that an epitaph signals that someone cared enough about a player to want to
commemorate eir departure from the MOO. You can browse entries in the epitaph
registry as well as write them.

One can give one’'s name to the undertaker. This is a relic of the fact that one
used to have to rename oneself to something like “Toadl13” before walking off the
edge of the world to commit MOOQicide. Giving on€’ s name to the undertaker before
renaming oneself caused on€'s actual name and aliases to appear in the appropriate
post on *obituaries. Giving on€s name to the undertaker is no longer
meaningful, but might be, again, when *Ballot:Bring Back the Blender is
implemented.

204 Interesting Places

The undertaker’s cottage doubles as a funeral parlor (with a mostly-working
pump organ), for those who wish to gather and mourn the dear departed.

Geographically, the undertaker’s cottage corresponds exactly to the caretaker’s
cottage in the formal gardens, and its floor plan is the same. To get to the
undertaker’ s cottage, go southwest from the ruined garden.

Crypt (#5502)

It seems reasonabl e to think that a mansion as large and as old as this one would
have a family crypt where the bodies of the recently departed would be laid out.
When the Russian Roulette pistol “kills” a person, eir “corpse” is moved to the crypt
and laid out on the granite slab.

To get to the crypt, go down from the undertaker’s cottage. Linger awhile to let
your eyes get used to the light, and to get afeel for the place.

Catacombs (#10328)

The catacombs are a classic “maze of twisty little passages’ puzzle. Each of the
nineteen chambers holds a different treasure, and this is part of how one can tell one
chamber from another (as well as the listed available exits being different). The
object of the puzzle isto collect all the treasures and deposit them in the sarcophagus
that’s in one of the chambers. The prize for solving the puzzle is that you get an
amulet with your name inscribed on it (presented in a ceremony that includes a

skeleton ballet). The amulet is a rotating trophy, and is yours to wear until someone
€else solves the puzzle.

Anyone may adopt a catacomb chamber as eir home.
To get to the first catacomb chamber, go south from the crypt.

The Green Cathedral (#83618)

The Green Cathedral’s purpose is just to be a quiet, restful spot in the woods.
The description changes with the time of day. In the interest of solitude, it will
accommodate no more than two connected players at any given time.

To get to the green cathedral, start in the open field. Go east into the forest

(near the open field), southeast (near the ruined garden), southwest (near the green
cathedral), then north.

Interesting Places 205

Japanese Garden (#38351)

The Japanese Garden is a tranquil spot deep in the forest. You can feed the fish,
whose level of hunger varies depending on how recently they’ve been fed. You can
also sit and meditate, which will enable you to learn about your Karma. (This is the
origina code on which the popular Kar ma FO (#1283) isbased.)

To get to the Japanese Garden, go southwest from the forest near the green
cathedral, then southeast.

A Dense Thicket (#83100)

It's difficult to balance trying to keep an area within the stated LambdaM OO
theme, and wanting to say yes to people who have put creative effort into building
and describing an area that needs to be outdoors but which might not actually be
found on the grounds of a large mansion. The dense thicket is one themely
transition to such areas, the idea being that if you wander into a dense thicket on the
grounds of a mansion, you might get lost and then not actually be on the grounds of
the mansion anymore. The dense thicket has a variable exit. At any given time, the
description will mention a place that lies in some specific direction. If you type
wander while in the dense thicket, you will seem to wander about for a bit, and then
catch a glimpse of a different destination. These destinations include parts known
and unknown, and are left for the intrepid explorer to discover on eir own.

To get to the dense thicket go east from the forest near the open field.

Fishing Pond (#66099)

The fishing pond is afine place to spend aleisurely afternoon.

I inherited the fishing pond from a friend who knew he was going to lose MOO
access, and it isto my great chagrin that | never finished it as | promised | would, and
to my greater chagrin that | can no longer remember the original author’s name.
When | finally decided to face facts and admit | just wasn’'t going to get around to
doing right by this project, | looked for a volunteer who would, and that volunteer
was Road _Dog (#96779).

Now, my dad used to take me fishing in my youth, and | know that if you bait a
hook with a worm, you hang it over the side of the boat (or a bridge) and wait for a
fish to bite; and if you’re going to cast for fish, then you use alure (or maybe afly). |
have a standing disagreement with Road_Dog about his implementation of having to
bait one's hook before casting. Be that as it may, Roadie has put a lot of effort into
making the fishing pond a fun place, with many different ways to interact. Roadi€’'s
emphasis was more on making things intuitively usable than on strict object-oriented
programming. The down side is that using the exani ne verb with various objects
doesn’'t always tell you the whole story of what you can do, but the up side is that if
you just try things that seem natural, they often work.

206 Interesting Places

Bert Burnsmythe is our resident fishing guide, and when he arrives on the scene

you can ask him for apole (ask Bert for pol e) to get started on your great fishing
adventure. Good luck. Ladies: Be sure to kiss the frog; you never know when you
might get lucky.

To get to the fishing pond, go southeast from the open field.

Guest Room (#864)

The main feature of the upstairs guest room is that it is home to the enormous
model railroad layout. This marvel of miniaturization, created by waffle, is the
epitome of themely transition, in this author’s humble opinion. Lots of things can
go there that might not otherwise make sense as part of a mansion and its grounds,
and lots of things have. Places geared to a more urban theme, for example, often
connect in Tiny Town and its environs. In the beginning, this was blessed by the
ARB as an officially sanctioned themely transition. Later boards would dismiss Tiny
Town connections as “boring” and exhort builders to find a connection that was
“more imaginative”. | don’t know of any recent builders who have built on the train
layout and applied for quota, so it's hard to know the current ARB members’ take on
this.

If you look at the layout, you can see where the train is, and also tiny figures
moving about, if there are any connected players there at the time.

If you type:
enter |ayout

you will be transported to a randomly-selected location on it. Many of the
locations there have train service, though some do not. From those locations you can
see (far above and greatly magnified) the guest room and its contents. To exit the
layout, type:

junp

Y ou will be transported back to the guest room.

Other rooms may branch off from the rooms accessible in this way, from which
you may or may not be able to see the guest room and jump back to it. The ideais
that at the first point of transition, the fact that you have just been miniaturized is
quite obvious. As you explore the environs, you get further and further “into” a
particular scene and the fact that you' re tiny is less obvious, perhaps even forgotten.

Also in the guest room (usually) isawind-up duck. Thisisafull implementation
of the project described in yduJ s programming tutorial (found in the library). You
have to take the duck to wind it up, then if you drop it, it does its thing. In
particular, its description changes depending on its state, and it stops quacking if you
pick it up, so it isworth playing with and looking at more than once.

To get to the guest room, go south from the library into the corridor, then south
again.

Interesting Places 207

Main Street Station (#31821)

The TinyScenery Express runs in a loop. A logical embarkation point is Main
Street Station, in Tiny Town.

Y ou can read the schedule to see the list of stops.

The loudspeaker keeps you informed of the train’s progress. If you don’t like the
noise, you can switch it off.

When the train pulls into the station, you can board it by typing enter train.
To get off thetrain at any point, type exi t . While on board, you can typel ook out
to see the train’ s surroundings.

Tiny Town, to the south of Main Street Station, is the most elaborately
developed part of the train layout as of this writing. Some of the other stops are mere
Tiny Scenery at present, but some have been or are being developed into more, and
are fun to explore. West of House replicates the entry point to the Zork game. (The
game has not been ported to LambdaMOO in its entirety, however.) South of
Reservoir has been developed: To the north is Swine Lake, to the south, the Happy
Trails Camping Area, where portable homes are welcome to park. Grand Central
Station provides access to several different areas.

The owner of the enormous model railroad layout specifically welcomes
connection requests.

There is no direct way to get to Main Street Station from the guest room, as
entering the enormous model railroad layout puts you down on a random spot. Y ou
can, however, go to the library, take Modern Model Railroading from the Geography
shelf, and read it. Y ou will be transported to Main Street Station directly.

The Corner of Main Street and Queens Boulevard (#31889)

The Corner of Main Street and Queens Boulevard is not an interactive area in
and of itself, but as the virtual hub of Tiny Town, it is an important bit of
infrastructure.

To get to the corner of Main and Queens, go to Main Street Station, then south
to Main Street, then south once more.

Club Dred (#50590)

Club Dred, party venue extraordinaire, is one of the most richly programmed
areas | know about. It comprises several rooms, including the main part of the club
itself, the back hallway, ladies and men’s rooms, the balcony, the kitchen, a video
room, the lower hallway and a band hall with a stage. It's an excellent place to
gather with friends for an evening of revelry.

_In each room, you can type about here for details and instructions for doing
things. Some highlights:

208 Interesting Places

In the main part of the Club, if you want to order a drink, you should type si t
at table. Then, when Abigail the waitress comes over, you can type order
<drink> from Abigail or order <drink> from Abigail for <player>.
Presently she will deliver a drink object, which you can drink, sip, taste, etc. Abigail
is quite a character; if you are feeling bold, you might flirt with her. If you are really
feeling rowdy, you might even goose her! The bar is usually too crowded to find a
seat, but you can stand and or der <dri nk> from bar if you are not in the mood
to sit down. There are some regular characters who only show up if six or more
people are present.

From the main part of the club, go west to the back hallway. Here you will find

three collages of photographs. You can typel ook first, | ook second, or | ook
third, OR you can type | ook for <player> if you have someone particular in
mind. The pay phoneis here, and it’s fun and easy to use. About her e will give you
the basic instructions you need to use it. If for some reason the person you’'re calling
has difficulty anyway, you may need to prompt em via page to type exani ne phone,
and things should go fairly smoothly from there.

From the back hallway, exits north and south lead to the men’s and ladies
rooms respectively. The basic commands in those rooms are what you would expect,
plus you can look wall, read <message-nunmber> on wall and wite
<nessage> on wal | to participate in Club Dred’' slong tradition of graffiti.

The exit up from the back hallway leads to the balcony. Aswith all the roomsin
Club Dred, typing about her e yields helpful information, in this case about how to
look at the play list and request and dedicate a song. You canj unp from the balcony
only if heavy metal is playing.

From the main part of the club again, you can sometimes sneak back into the
kitchen (it depends on whether or not the bartender is paying close attention). There
you'll find the Club Dred freezer, which is a cross between a container and a room.
Y ou can put things or people into it. People turn progressively bluer the longer they
stay in there.

Again from the main part of the club, you can go down to the video room. The
main feature of this room isthat the tables are for two, and it’s possible to have more
intimate conversations as no one except the person sitting at the table with you can
overhear the conversation. West from the video room is the lower hallway. You can
buy aticket from lan if you wish to proceed (west) into the band hall. The way south
leads to an RPG area; non-rpg players are denied entry. Ladies: Do not miss a chance
to)flirt with lan. (He' s shy, so you may have to persist, but his attentions are worth
it!

To get to Club Dred, go northwest from the corner of Main Street and Queens
Boulevard.

The Morgue (#70385)

The Morgue is the single creepiest place | have ever been to on LambdaM OO,
and | even remember the consternation of the ARB members at the time of its

Interesting Places 209

creator’ s quota application, because the goings on there are so unspeakable. Y et they
met the criteria and the request was granted.

The commands you’ Il need to do your grisly work there are:
get body from body bag

get instrument fromtable
or:
get tool from cabinet

sit on <body>

cut <body> with <tool-or-instrunent>
stand from <body>

toss <body> in bag

As always, exam <obj ect > will give you more information about its, er, uses.
The body will be that of a real MOOer who has been absent for some while. The
tools are many and varied. The sound effects will be with me for along time.

To get to the morgue, go southeast from the corner of Main Street and Queens
Boulevard.

Sensual Respites (#72239)

I am not a habituée of Sensual Respites, and | fear that | will not be able to do
justice to the fine programming that 1 know has been done there and in the local
environs, but it would be a crime to omit it, and so | am forging ahead.

Sexually explicit material is appropriate and encouraged in Sensual Respites, and
it is probably second only to the living room as a popular hangout. Neighboring
rooms offer a wide variety of variations on sexual themes. There is no directory,
however — one is expected to explore on one' s own.

Highlights include that the genders of the room’s occupants are displayed when
you enter, idlers are moved to adjacent rooms depending on how busy Sensual

Respites itself becomes, and there is a verb with which enables players to @ounce
other players who are being obnoxious.

Sensual Respites began as an adjunct to The Sex Room (#53011). Over the years
of its existence it has expanded into a suite of many rooms, and its programming has
become ever richer. The Sensual Suites Hotel was relocated from the Singles complex
to Tiny Town around the start of the new millennium (in honor of all the tiny sex
that takes place there).

To get to Sensual Respites, go west from the corner of Main Street and Queens
Boulevard to West Queens Boulevard, thence north into the Sensual Suites Hotel.
From there, go northwest into the office, down to Members Only, then southwest.

210 Interesting Places

Yib’'s Palace! (#93665)

Yib's Palacel isagambling casino in Tiny Town.

Even after | became awizard, | avoided using wizperms in most of my building —
partly to minimize unintended security holes, but mostly because | enjoyed the
challenge of making toys that were fun that “anyone” could make — | liked showing
how much could be done without needing a wizbit. Then one day the question
occurred to me, “What are you saving it for?” and Yib’'s Palace! is the result of that. |
had bandied about the notion of one's occasionally being able to find a few bytes of
quota when searching the living room couch for lost items, but the bookkeeping
necessary to keep people from trying to cheat seemed to be more trouble than a few
bytes of quota were worth. Eventually someone in my circle of brainstorming pals
suggested a slot machine that would take in and give out quota, and | went with that.
I bought a few books about how slot machines work, and spent several hours with a
spreadsheet program trying to get the reels just right so that the payouts would work
out. The consensus among people who gave early feedback was that the house
should take a cut, as is the case with real slot machines, so that’s factored in. Once
that was done, | made several particular slot machines and a place to put them. In
the spirit of “something for everyone”, there is a slot machine for every budget, from
5 bytes up to 100 bytes at a time. (There used to be two other, more expensive
machines, but someone tried to cheat, and another wizard looked at the possible
payout (low odds, but possible) and decided e was uncomfortable.) cArrOT got into
the act, and made some additional, fancier machines later, and those are a lot of fun,
too.

Y ou have to give explicit consent before you can win or lose quota. After you've
played a while, you can ask the pit boss for the tally to see whether you' re ahead or
behind, and for the scoop, to see everyone's current standings.

You can order adrink from our sexy waitress (sister to Abigail, who works across
the street at the more respectable Club Dred), or, if it gets too noisy in the casino
itself, you can repair to the High Rollers’ Club (just to the north) and have a drink
with your friends there.

To get to Yib's Palace! go northeast from the corner of Main Street and Queens
Boulevard.

Skid Row (#73624)

Not long after Yib's Palace! opened, someone said to me, “Let me know when
you've built Skid Row,” and that’s typical of how | get my best inspiration for
building places. The challenge (as always) was to make it interesting and not just tiny
scenery.

Its main purpose is to serve as a home for MOObums who have no other place to
go: anyone may set eir home there. Y ou can sit on the curb; disconnected players are
depicted as deeping in the gutter. The dumpster has a rotating inventory. You can
toss things in, and even go dumpster diving if you're of a mind to. If you're feeling

Interesting Places 211

really desperate, you can set your home inside the dumpster itself. You can aso
deface the dumpster with graffiti and read what others have written.

To get to Skid Row, go east from the corner of Main Street and Queens
Boulevard.

The Drawing Room (#56651)

The drawing room was created to provide a venue that was close to the living
room but for quieter conversations. It is one of three rooms served by James the
Butler. (The other two are the smoking room and the library alcove.) James is the
result of my second major project after the MOO helicopters. He is a’bot who serves
drinks, and was built in collaboration with my friend The Walrus (I implemented
the ’bot, The Walrus implemented the drinks.) Butlers and bartenders are derived
from the same generic drink-serving puppet; the difference is that a bartender will
serve up absolutely anything, while a butler has afixed selection of drinksto offer. In
the early days of the drawing room, James's repertoire included only brandy, sherry,
port, plus tea and coffee. His repertoire is still fixed, but the selection has expanded
greatly over the years and for a few years, at least, James has also been authorized to
deliver a programmer bit, which non-programmers may then install. James visits the
drawing room periodically, offering refreshment; he can also be summoned by
ringing the small bell on the curio table.

At one end of the room is a large aquarium filled with fish. There is fish food
nearby, and feeding the fish is always a pleasant way to pass a few moments. Thisis
one of avery few cases | know of where looking at an object gives more information
than examining it — you must feed the fish by name, but only looking at the tank will
list the names of the fish. The tank is also a gateway to the RPG system — stare at it
to enter.

The curio table normally holds three items: the bell to summon James, a cherry
puzzle box, and a stamp album. The cherry puzzle box is pleasant and fairly easy to
solve. It isimplemented as a portable room; to begin, you must remove the box from
the table, drop it, and then enter it.

The stamp album, created by Bartlebooth, is one of my all-time favorite objects
on the MOO. Each page in the album shows a selection of stamps; each stamp is
based on an actual room in the MOO. You can study a particular stamp to see the
room’s full description and number. The stamps descriptions are derived from a
number of factors. The shape of each stamp, the “country of origin”, what or whom
is pictured on it, its value (in MooCents), and whether it is cancelled or not all have

meaning. Type about al bumfor those details.
To get to the drawing room, go northwest from the dining room.

212 Interesting Places

The Smoking Room (#51556)

The smoking room was created at the same time as and in concert with the
drawing room, expressing its authors’ more exuberant side, and of the two roomsit is
consistently the more popular. (Go figure.)

For swashbuckling fun, find a worthy opponent, take a fencing sabre each from
the pair of hooks above the fireplace, and have at it.

For your smoking pleasure, there is a rack of pipes and a humidor of fine cigars.
Each pipe is different, and blowing smoke rings is considered de rigueur. To my own
surprise the exploding cigars are perhaps my favorite of all the things I’ve made on
LambdaM OO. Best to smell one before you light it, however.

The bookcase offers a choice selection of classic literature, for your reading
enjoyment.
Pull on the bell cord to summon the butler.

To get to the smoking room, go northeast from the dining room or east from the
drawing room.

yduJ’s Hair Salon (#3443)

This venerable establishment has been in existence for longer than | can
remember, and it isagem. LOVE your hair! Luigi’s talent for giving on€'s hair new
lifeis unsurpassed. Just chat with him and say what you'd like, and it’ s yours.

In Real Life, a haircut of great or questionable merit only lasts a few weeks. On
LambdaM OO, it’ s gone within twenty-four hours.

To get to yduJs Hair Salon, go east from the entrance hall, south into the
stairwell, up one flight, west four times, then north. Or go up from the family room,
east twice, and then north.

Hacker’s Heaven (#4747)

This used to be the place where all the “in” people hung out, at least for a while
—asiswell known, places wax and wane in popularity over the course of time.

The magic number repository is a child of the recycling center. You can look at
it to see what appealing object numbers are available, and request one if you wish.
The magic number extractor can be used to search for additional magic numbers.

The LambdaM OO Official Helpful Person Badge Dispenser is here, and if you
ever wondered where those Official Helpful Person badges came from, this is the
place.

The number (it varies) is a specia object that can be mathematically
manipulated in avariety of ways and is not limited to 32 bits.

Interesting Places 213

The other items include intravenous caffeine machine, the Gary Severn
Memorial Fission Reactor and Power Supply, thermometer, harmless geusting
simulator, Capitalization Police, Anarchist, and Political Bumpersticker. They are
artifacts of long-ago good times, created and programmed for the joy of it. Or else
I’m not enough of a hacker to appreciate their deeper worth.

To get to Hacker’ s Heaven go north from yduJ s Hair Salon.

The Blue lguana (#71896)

This very fine drinking establishment first opened its doors circa 1994. Sydney,
the bartender, will be glad to serve you a drink.

There is a pool table here, which, while it takes a bit of focus to master, is well
worth the effort and terrific fun. Beware of pool sharks, however — one€'s skill
improves with practice. Toss the coin and have your opponent call it in the air to see
who begins.

This would be an excellent venue for a good-sized party if one wanted a change
from some of the more usual haunts. Best enjoyed by two or more people at atime.

To get to The Blue Iguana, go to the gazebo, t ake shell from tabl e, then
listen to shell. Thenfrom KokoMOO beach, proceed north.

The Middle of the Ocean (#6404)

The ocean connects many of the beaches that people have built here over the
years. Like the thicket, it utilizes a variable exit. At any particular moment, the tide
will be flowing in the direction of some particular place. This changes with time, or,
if you'retired of waiting, typewai t , and the tide will change direction sooner.

To get to the middle of the ocean, type swi mfrom any of several beaches. One
way to get there is to listen to the shell on the table in the gazebo, then swim out
from KokoM OO beach.

Sandcastle Beach (#7542)

Of the various beaches on LambdaM OO, Sandcastle beach is perhaps my
favorite. You can bury things (and people!) in the sand, and build arbitrarily

elaborate castles, too. To get started, type about here.

To get to Sandcastle Beach, swim to the middle of the ocean, wait for the tide to
turn, then swim for shore.

214 Interesting Places

Deep Thought’s Foyer (#34650)

Deep Thought is the hardest puzzle on the MOO that I’ ve solved so far (though |
know of harder ones), and it is justifiably famous. It's a programming puzzle. The
object isto get from Deep Thought's Foyer to Deep Thought’s Lair. Good luck. More
skill.

To get to Deep Thought's Foyer, proceed as follows, starting from the entrance
hall:

east to Corridor

south to Ground Floor Stairwell
up to First Floor Stairwell

west to First Floor Corridor
south to First Floor Corridor
east to First Floor Corridor
north to First Floor Corridor
north to First Floor Corridor (Boardroom)
east to East Corridor

east to East Corridor

south to Hag's

south to Deep Thought’ s Foyer

Vent System (#23032)

The vent system is just vast. It connects many, many of the older public and
private rooms on the MOO, and might even be used by MOQO archaeologists to
identify which rooms are among the oldest here.

I’'m told that long ago the vent system used to rattle and clank mightily, but
have never heard this myself. The naming convention is that the part before the
hyphen in a vent room’s name represents the floor (GW is ground floor west, 2W is
second floor west, 15E is floor 1.5 east (because of short flights of stairs)). The part of
a duct’s name after the hyphen sometimes seems to give a hint about a connected
room, if any, for example. “L” for laundry, “K” for kitchen, etc., but | have not
broken all of this part of the code.

I haven't explored every bit of it, but the descriptions do vary: sometimes new,
sometimes old, sometimes dusty, seemingly corresponding to the parts of the house
that they run through.

There are many ways to enter the vent system, and there is a map in the map
room (northeast from the library). Hereisaquick tour of a part of it:

Starting from the entrance hall, go east to the corridor.
Then south into the stairwell.

Interesting Places 215

Then up three flights to the top.
Then west to the utility roof.

Enter the air conditioner which is usually there (it's possible someone
may have moved it; the housekeeper returnsit periodically).

Go east.

Go down to the bottom. While you’re there, jump on the springboard,
and when you've had enough fun with that, go back to the bottom and
proceed west twice.

Go up, and then out. You will bein afamiliar place.

To get to the vent system, you can type vent from amost any room that’s
connected (the laundry room is one), and to exit the vent system to a connected

room, you can generally type out . A few chambers use compass directions, instead.

The Edge of the World (#40309)

The Edge of the World used to be the place to go if you wanted to leave the
MOO for good. In days of yore, one could divest oneself of various ties to the MOO
(recycle all objects, get rid of all morphs, even give up on€’' s name), then walk off the
edge of the world and on€’ s character would be recycled. MOOicide was discouraged
by the wizards, and if one chose to leave the MOO in this fashion, and later wanted
to come back, e would have to write a letter to the wizards saying why e MOQicided
and how e intended to avoid similar situations in the future.

In 1997, *Ballot:MOOicide Reform passed, which changed the behavior of the
Edge of the World to @ewt i ng a player for one month less than the reap period. If
the person continued to stay away and was subsequently reaped, e could get a new
character and come back for the asking without having to explain emself to a wizard
— or anyone else — unless e wanted to.

In 1998, *Ballot:Bring_Back the Blender passed, which called for the cuisinart in

the kitchen to be modified so that it would @ oad a player, and for jumping off the
edge of the world to result in a newting similar to that associated with the Russian
Roulette pistol, i.e. between two and six days. Implementation of this ballot is not
yet complete. In the interim, the wizard TheCat (now Retired-Wizard-4) decided that
while the blender part of *B:BBB was being implemented, the wizards could fudge the
edge of the world part by manually un-newting anyone who had been a newt for
more than a week.

In 2000, *Petition:Drama_Queens was written to request that the wizards cease
this behavior. The ballot passed.

The departure log lets you read alist of people who have walked off the edge.

To get to the edge of the world, go north from the driveway, then west as far as
you can go.

You see a banana peel here.

216 Interesting Places

Chapter 8 — LambdaM OO-Specific Reference
| nfor mation

LambdaM OO, the original and largest MOO in existence, has been extended by
its users in a marvelous variety of ways. This chapter attempts to document some of
the highlights. It is divided into three sections: Feature Objects, Player Classes, and a
detailed description of LambdaMOQ’ s political system and how to use it.

A Short Compendium of LambdaM OO Featur e Objects

There are around a thousand feature objects on LambdaM OO, which makes a
thorough survey impractical. There are some, however, that I’ ve come to think of as
“standards of the jazz repertoire”, in a manner of speaking, either because of their
popularity or usefulness or both, and it isthose that | choose to present here.

It’s not uncommon for a feature object to have a variety of unrelated verbs, the
theme between them being merely the author who wrote them. | have written about
those verbs that inspired me to choose these feature objects as examples; you should
read the help text for a particular feature object (FO) to see what other commands it
offers.

The section is divided into three main categories: popular social feature objects,
informational feature objects, and utilities.

Popular Social Feature Objects

#30203 (Stage-Talk Feature)

Sage talk is aso known as directed say. This FO lets you direct speech to a
particular person. To useit, precede a player’s name with adash. If | type:

-Plaid_Guest Hi . Wlcone to LanbdaMOO
then everyone in the room will see:
Yib [to Plaid Guest]: H . Wlcone to LanbdaMXO.

This FO aso provides a way to simulate pointing to yourself and saying
something. If | type:

<In a silly nopod, today.

then everyone in the room will see:
Yib <- In a silly nood, today.
The Stage-Talk feature is provided as part of LambdaCore.

217

#40842 (Social Verb Core and Featur e Object)

Thisis avery popular set of “short cut” verbs for frequently used gestures. The
verbs can be used either alone or directed at a player or other object in the room. If |

type:

wave eep
then | see:

You wave to eep.
eep sees:

Yi b waves to you.
The other people in the room see:
Yi b waves to eep.
The social verbs provided by this FO are:

comfort cry nod hug
wink poke grin kiss
yawn shrug smile french
wave blush laugh bow
cackle cringe sigh

giggle smirk chuckle

You cantypesoci al to seealist of these verbs online. Several of the verbs have
text which modifies them, for example nod depicts you as nodding solemnly.

The help text explains how to customize these verbs if you don't like the
modifiers provided by the FO itself.

Versions of this feature object are frequently found on other MOOSs, but are not
standardized.

#21132 (Antisocial Feature)

This verb is a natural follow-on to the social verb core. The syntax is basically
the same, except that you can’t use the verbs by themselves — you have to designate a
target. On the other hand, you can specify more than one target, for example:

eye Klaatu Kirlan Boo
You eye Kl aatu, Kirlan, and Boo warily.

The available anti-social verbs are:

eye pat eyebal |
grunp paper wor k ness
feh poke wake

218 LambdaM OO Reference

rtfm pout sycophant

i gnore pave snoke

waggl e Bi | | yBragg sal ad

Bl ake bop report
glare EPOXY Sni del ey

t oy waf fl e sl edge
pound post age tile

silly nmt wi t her

gag rael al po

frown cough crush

prod ice deconstruct
unpl ease flane snel |

Wi t eRabbi t roll stern
unamnused di vi ne shoebox
peer di senbowel tw st
shooty Buddy t hwap

face defenestrate whuggl e
grow neut er Whol ef | af f er
t ongue handcuf f Sapphos
ridicule hoop val ue

bury bl ame reverse- @j ect
si gh di st boot

I recommend trying them out with a good-natured friend.

#4572 (APHID’s Socializing Feature Object)

This verb is an extension of enpte. It enables you to direct any gesture to a
particular person (or to everyone in the room) rather than having to rely on those
provided by other feature objects or having to customize a message in advance. The

command begins with a period (.) followed by the first person singular of any verb
(no space in between) followed by the rest of your text. If | type:

.hit Nmup for sone chocol ate.
I will see;

You hit Nimup for some chocol ate.
Nim will see:

Yib hits you up for sone chocol ate.
Everyone else will see:

Yib hits Nmup for sone chocol ate.

If you have this feature and type @oci al - opti on +all, then you can use the
syntax:

.wave to everyone

LambdaM OO Reference 219

mailto:reverse-@eject

Each person will see a message listing everyone in the room except that the word
“you” will be substituted for eir name in the message.

There are other Feature Objects that offer variations of this verb, which is
sometimes referred to as posing.

#5490 (Dancing Feature Object)
I’ve included this feature object in my compendium because it’ s fun and because
it’s one that people frequently ask about. It provides a selection of dances which you

can perform either solo or with a partner. It provides a verb, @ol i t e, which lets
you be polite (ask, first) or more impulsive when you dance with someone. Y ou can

type @lances to see the choices available.

Werebull hands Yib a rose which she pl aces between her
teeth. Then Werebull leads Yib through a rhythmc tango,
steppi ng across the floor and ending with Werebull hol ding
Yib in a | ow dip.

This feature object was originally programmed by APHID.

I nfor mational Feature Objects

People are naturally curious about the world around them. Or nosy, depending
on your point of view. The properties and verbs on just about everything are
readable, and | am continually amazed at the number of ways that programmers find
to combine disparate data and draw unexpected conclusions. There is a slowly
evolving tug of war between the snoopers and the snooped-on, as well. As verbs
query ever more extensively, counter-verbs are written to detect and/or deflect
various queries. As detection verbs become known and come into more widespread
use, snooping verbs become more stealthy in their methods, and on it goes.

This section is divided into three parts, based on the kinds of things the FO's
provide information about: People (players), places, and things.

Feature Objectsthat Primarily Provide | nformation About People

#24222 (login watcher)

The login watcher informs you when other players connect to or disconnect
from the MOO. It provides a way for you to designate individual players as
“interesting”, and then you will see messages like the following:

< connected: Tartan_Guest. Total: 192 >
< di sconnected: El ephant_Ears. Total: 186 >

The @who verb on this feature object shows you an @ho listing of only those
players you consider interesting (inst of everyone on the MOO).

220 LambdaM OO Reference

Your @ nteresing list is technically private (the property where it's stored is
unreadable), but the act of adding someone to or removing someone from your

@nteresting list can be detected, as can the use of @who. (See also hel p
#14141: @i nt)

#24262 (Fast & DangerousInfo FO)

This is the most comprehensive informational FO that | know about, though it
gets occasional criticism for not being stealthy enough.

@ bi
will give you a detailed report with lots of information about a player.

@gb
will do essentially the same thing but with less chance of triggering someone’s
detection verbs, if e has any.

Both of these verbs are resource hogs, and the FO provides a large suite of more
specialized verbs that you can use if you only want to know a particular thing about
someone and not eir entire life story. These are:

@ <pl ayer or players> Gives quick information about one or more
players location(s).

@ka <pl ayer > Lists someone’ s aliases.

@vor phs <pl ayer > Lists someone's morphs.

@ohel p <obj ect > If an object doesn’t have formal help text per

se, thisverb will list all the help for the
individual verbs.

@ref <player> Shows some relational information about
<pl ayer >, for example whether you own kids
of eir generics or use feature objects e owns, etc.

@days Shows you the names and ages of players
whose birthday istoday. (Usesinfo from the
birthday machine in the Living Room.)

@wo Lists @ nt er est i ng players who connected
and disconnected while you were out.
@nem es <pl ayer > Prints alist of people with whom <player>

“might have strained diplomatic relations’.
This might include persons that <pl ayer > has
@agged, @ ef used or @anned, for example.

@i el ds <topic> Prints alist of specific fields known to the
helpful person finder, about which you may
then make further inquiry to identify a helpful

person. Example: @i el ds newbi e

LambdaM OO Reference 221

mailto:@@

@ users <feature object>

Prints alist of players who use the specified
feature object.

@ol di ng <pl ayer >

Prints an easy-to-read list of the items the
specified player is carrying in eir inventory.

@or ni ness <pl ayer >

Offersinformation about the kind of sex that
<pl ayer > seemsto be horny for, if any. This
isdetermined by <pl ayer >’'s. hor ny property
(if present), which can be either a string giving
the object number of a player (e.g. “#50222"),
any string (e.g. “vanilla’), or a one-letter code.
The codes are as follows: “ S’ (traight), “G” (ay),
“B”(), “F"(arm, i.e. animals), or “X” (bondage,
discipline, sadism or masochism).

A person will only be reported by thisverb as

being horny if eisregistered with the birthday
machine as being 18 years of age or older.

@ntruders
@ ntruders <pl ayer >

Lists people who are in rooms you own or in
rooms that <pl ayer > owns.

@users <obj ect>

Shows all kids of the specified object and their
owners.

@py <player>

Shows a description of the room <pl ayer > is
in, pluswho’s with em.

@ og Shows recent login and logout activity for the

@ og <pl ayer > specified player.

@c Gives an online count of how many players are
connected and maximum new logins allowed.

@n Shows alist of everyone online. Uses shortest
aliases and tries to fit it all on one screen.

@pal s Givesalist of online pals of the specified

@pal s <pl ayer >

player. (Thisverb isuseful because different
player classes have different ways of
designating pals.)

@ eapabl e

Shows you whether any of your pals or anyone
you have designated as @ nt er est i ng isup
for reaping soon.

@ econ <roone

Prints information about a specified room,
including its description, the names and
genders of connected players in the room, and
some information about the room’ s security
setting, if available.

@en <pl ayer or players>

Provides information about players seniority
based on MOO ages.

222 LambdaM OO Reference

@t atus <pl ayer >

Shows abbreviated information about a player’s
status on the MOO. Seehel p

#24262: @&t at us for an explanation of the
various fields and abbreviations.

@ubscri bers

Shows alist of players who subscribe to alist
with notification. (The identities of players
who subscribe to a list without notification are
not available to this FO.)

@isi ng #24262

Gives online information about all the verbs on
this FO, including the syntax for each verb.

@

@f <l ocation>

Think (“where from”) Lists playersfrom a
specified location. Uses#5365 (Real Life
Registry). (Seehel p #5365.)

@pr

Liststhe “experience levels’ of all connected
non-guest players sorted into five MOO age
categories, “dinos’, “fogies’, “oldies’,
“middies’, and “newbies’. Seehel p
#24262: @pr for definitions of these terms.

@out hs
@out hs!

Prints alist of players believed to be 16 years
old or younger (according to the birthday
machine). The second form lists both
connected and unconnected players.

@eezers
@eezers!

Printsalist of players believed to be as old as or
older than Haakon (#2) (according to the
birthday machine). The second form lists both
connected and unconnected players.

ii <player>

Prints a player’ s inventory, with object
numbers.

wias with <string>

W hich (player) aliases start with a specified
string? Useful for screening possible names
you might want to add.

woas with <string>

W hose aliases start with a specified string?
Thisversion is much spammier than wi as,
giving each player’ s name and number and the
aliasin question that e goes by.

#36714 (Carrot’s Social I nteraction Feature)

This feature object shows information about players MOO ages, offline ages (as
provided to and by the birthday machine), and also provides some verbs that list
players friends and cliques.

LambdaM OO Reference 223

#1283 (Karma FO)

This FO is strictly for fun, but is popular. It gives you the same information
about yourself that you can get by sitting and meditating in the Japanese Garden,
and also will give you similar information about other players. Thereis a note on the
reference shelf in the library that explains how one’ s karmais determined.

Feature Objectsthat Primarily Provide | nformation About Places

#23824 (Compass Rosette Featur e Object)

This is an extremely useful FO for exploring — a very good adjunct or aternative

to the @vays command. The @ ose command can be customized in a variety of
ways. This feature object has been ported to many MOOs, with the author’'s
permission.

#46278 (Carrot’sViewing Feature)

This FO provides the @lvi ew command, which capitalizes the names of details
in a room’s description or a detail itself. One might argue that this is cheating, but
on the other hand, it might lead people to look at some details that they might
otherwise not have bothered even to ook for.

#41975 (Obvious Featur es Object)

This feature object offers a potpourri of verbs. One that is very useful for

exploring is @rs (also @rs <roont) which stands for “long range scan”. It
presents a tiered list (three levels) of exits and destinations accessible from the room
you’'re in or the room you specify.

Feature Objectsthat Primarily Provide | nformation About Objects

#10218 (Mazer’s Object Utilities Featur e Object)
This FO is a nice collection of commands for investigating the object hierarchy.

It includes @ncest ors, @escendent s, @escendent s_suspended, @ranches,
@r anches_suspended, @ eaves, and @ eaves_suspended.

#113366 (LambdaM OO Museum Search FO)

The number of generic objects on LambdaM OO has become amost mind-
bogglingly large. The @msear ch command helps you narrow your search. You
could, for example, type @rsear ch puppet, and after the search was complete you

224 LambdaM OO Reference

mailto:@branches

would be directed to specific displays in the museum showing objects that have the
word “puppet” in their name.

Utility Featur e Objects

#35353 (Pasting Feature)

This feature object is included with the LambdaCore. You can use the @ast e
command to display multiple lines of text to everyone in the room you're in, or

@asteto <pl ayer> to display multiple lines of text to one person. In both cases,
the system prompts you to type in lines of text, followed by a period on a line by

itself. Inlieu of typing, of course, you can paste in text from another window. Note,
@ast e is sensitive to lag and sometimes the text doesn’'t appear immediately.
Output from the pasting feature object looks like this:

---------------------- Private nmessage from Frebblebit----------------------
This text was generated with the
@ast et o command.

#25552 (Multi-communications feature)

This is the feature object that enables players to talk on channels. It has
extensive help text. The basic commands are:

@hannel s Lists all channels.
@con <channel > Quit one channel and start listening to another.
@sw <channel > Continue listening to your current channel, but talk

on and listen to a new channel.
@si | ence <channel > | Quit listening to and talking on a channel.

@m <t ext> Broadcast <t ext > on your current channel.

Xm <t ext >

@m <text> Emote <t ext > on your current channel.

Xm <t ext>

@who Shows who is listening on your current/designated
@who <channel > channel, or all channels.

@who all

#65000 (Quota-Transferral Feature)

In 1994, *Bal | ot : Quot a_Tr ansf er s passed, enabling players to transfer quota
to one another. This feature object is the mechanism by which quota transfer is
accomplished. The syntax is:

LambdaM OO Reference 225

@t <anount> to <recipient> <optional reason>

Y ou must be at least one month old to transfer quota. Transfers are posted to the
public mailing list * Quot a- Tr ansf er - Log.

Popular LambdaM OO Player Classes

The section on player classes in Part | summarized all the commands on all the
player classes that are provided as part of LambdaCore. This section outlines the

commands available on the most popular LambdaM OO player classes.

LambdaM OO has over sixty player classes to choose from. For this section, |
have chosen classes from the player class hierarchy that are used by about 70% of the
LambdaM OO population.

Details of the syntax and usage of each command are given in Appendix A.
Simple summaries are presented here to give a sense of what each of these player
classes has to offer.

Generic LambdaM OO Citizen

All players on LambdaM OO are members of the Generic LambdaM OO Citizen
player class. People who run other MOOs might want to consider putting a citizen
player class between Frand’s player class and generic builder.

Some of these commands were mandated by ballot, others are utility commands
relating to structures that are specific to LambdaM OO, (e.g. the RPG system).

@ ut ori al — Transports you to the tutorial, where you can practice a variety of basic
commands.

@an, @an! —Universally bans an object from all rooms that you own. The second
form also bans any children of the banned object.

@inban — Stop banning a person or thing from rooms you own.

@anned — List those players and things you have @anned.

@ns —Printsalist of RPG Game-Masters

@rake- petiti on —Create a petition object.

@etitions —List existing petitions.

@al | ot s — List ballots. With no arguments, lists open ballots. Can also take any of
“passed”, “fail ed” or“all” asan argument.

@etition-options — Displays and/or sets various options relating to petitions,
including whether or not you want to be automatically informed about open
ballots.

226 LambdaM OO Reference

mailto:@ban!

@om nat e — A command to nominate a pl %/er to elected office. The elected boards
are the Architectural Review Board (ARB), the reapers, and the registrars.

@rb-petitions, @ eaper - petitions, @egistrar-petitions — List
petitions of people currently nominated for the Architectura Review Board,
reapers, and registrars, respectively.

@rb-ballots, @eaper-ballots, @egistrar-ballots — List the specified
open ballots.

@oot — A command which permits players to boot a guest off the system. Two
players must act in concert, and a reason must be given. The offending guest’s
siteis blocked for 1 hour.

@n t ness — A set of commands (see hel p @ t ness) to reliably log an exchange
between players, view such logs, and publish such logsto amalling list.

@ge — Displays a person’s age, with deductions for system down time. (The
deductions are an enhancement to the generic player’s @Gage command.)

@rb, @eapers, @egistrars — Display a list of current Architecture Review
Board members, current reapers, or current registrars, respectively.

@ | ush- cache — Delete one' s feature cache. Feature caching was mandated by ballot
#71687, although an inspection of the code suggests it may only have been
partially implemented.

@il — A command to specify how you would want various objects you own to be
distributed, if you were to leave and never come back.

@mai | — LambdaM OO has an email policy which prohibits the use of solely free
anonymous email addresses. Existing users with such accounts must provide an
identified email address (one whose owner’s name is known or knowable), either
their own or aréative's, in order to gain full accessto LambdaMOO. @nmai |l is
the command by which such users can provide a valid email address. (See hel p
@nmai | for more information.)

@ag-site <guest> for <duration>— Gag aguest and all guests from the same
site as the specified guest.

@ingag- si t e — Stop gagging all guests from a particular site

@ag- si t es — List the guests whose sites you have gagged.

Generic Player Class With Additional Features of Dubious Utility(#7069)

This player class was programmed by Gary Severn (#15), who was also the
wizard Dukas. There is no help text for it, per se. | presume it was programmed
before adding help text to player classes and generic objects was as established a
convention asit is today.
seek — This command tries to combine the convenience of teleporting with the

appearance of walking. If you seek a person, it tries to find an entrance into the

LambdaM OO Reference 227

mailto:@reaper-petitions
mailto:@registrar-petitions
mailto:@reaper-ballots
mailto:@registrar-ballots
mailto:@witness
mailto:@reapers
mailto:@registrars

room €'s in and move you through it. It only sort of works, but the concept is
good. (Thereisan updated version of this on FO #27325: @seek.)

Anot her feature of #7069 that isn't a conmand per se:
The title verb affixes an idle status to your name when someone |ooks at a room
you'rein.

Experimental Guinea Pig Class with Even More Features of Dubious Utility
(#5803)

(See aso help 5803-index.)

@s/ @show— A short version of @how that doesn’t list properties or verbs.

ways — Very like @vays. Shows a short list of obvious exits. Unlike @ways, it doesn’t
let you specify alocation, but only shows you exits from the room you are in at
the time. My speculation is this: This command existed first, then the more

flexible @ways command was added to Frand’'s player class at a later time and
#5803: ways was rendered obsol ete but no-one thought to remove it.

I — A polite spoof verb. !<string> announces an arbitrary string to your current
location, except that if the string doesn’t contain the your name somewhere as a
distinct word, your . spoof _attri buti on property (with the substitutions of
player.name for % and % for %84 is appended and if the resulting string still
doesn’t contain your name, then your name is appended anyway.

@ ast | og — Thisverb takes two forms:
@ ast 1 og <player> <pl ayer> <pl ayer >

isl, just like @ho, except that it shows disconnected players before connected
players.

@ astlog for <nunber> <day/week/ nont h>[s]

(eg. @astlog for 2 days) lists al players who have logged on during the
specified interval.

bori ng — bori ng on makes you immune to food fights; bori ng of f alowsyou to
participate again. Subsequent to the creation of this command, at least one

other object was modified to respect the . bor i ng property: If you are. bori ng,
then things will not fall out of your pockets down between the Living Room

couch cushions.

@edi t — A property editor for properties that are other than strings or lists of strings.
The verb documentation describes it as “ experimental”.

party — Looks for various rooms with more than one player, tells you who'’s there,
how long they’ve been idle, and asks if you'd like to go there.

hear t beat — Starts up a task to print out the time every <n> minutes from now on
unless you' ve been active during that minute. Good for people who like to stay

228 LambdaM OO Reference

mailto:@ss/@sshow

idle for long periods of time and who want to have some means of time
stamping occurrences that show up in their client buffers. (This verb is actually
not callable from the command line; one has to write a separate verb to call it, or
useeval .)

+ — Thisis the remote-emote command. It is kind of like a re%ular emote in that you
specify your actions in the third person, but you specify the player who will see
it, and you don’'t have to be in the sameroom asem. If | amin Yib's Study, and
| type +boo beans you with a water ball oon, then Boo would see: (from
Yi b's Study) Yib beans you with a water ball oon.

eprint — Thisis a command that will mostly be of interest to programmers. Type
eprint <long-horrible-conplicated-noocode-expressi on>, and it will
format said expression to fit within . I i nel en columnsin away that’s (usually)
more readable.

@rettylist — This command lists a verb with indentations that are intended to
make it easier to read. Its author (Rog) acknowledges that it is slow.

@ pr op — The author of this verb (Rog) writes:
The only difference between @pr op and @r op is that @pr op does a full eval
of its value argument, whereas @r op only accepts literals; e.qg.,

@prop foo.bar x:contents() rc Wzard

It may also be that | never moved thisto #217 because | decided that doing afull
eval wasn't a good idea anyway (if you need to do it, then you may as well just
do; foo. bar = <what ever>).

@l i st — The author of this verb (Rog) writes:

@l i st seems to differ from @i st in accepting an upl oad argument, which
causes the listing to appear in a form that can then be edited and then blasted
back by a client. This has been superceded by local editing (i.e,, @dito
+l ocal, @dit foo:bar) and soislikewise not terribly useful anymore.

page — This is a fancier version of the original page command that enables you to
page more than one player at a time. If you do, you must enclose the list of
player names in quotes:

page "Klaatu Nim Bartl ebooth" Party at C ub Dred!

Player Class hacked with eval that does substitutions and assorted stuff
(#8855)

This player class has a hodgepodge of commands, some of which are strictly of
interest to programmers, but others of which are of a more general interest. See also

hel p pcs-i ndex.

foll ow — This command is not to enable you to follow someone, but to allow
someone €else to follow you, although since most LambdaMOO players are

descended from this player class, pretty much anyone can follow anyone.

LambdaM OO Reference 229

mailto:@edit

st op-fol | owi ng — A person would use this command to stop following you.
@i st-foll owers — List the people who are following you.

| ose — 1 ose <name> will cause <name> to cease following you. | ose everyone
will cause everyone to cease following you.

' <pl ayer> <text> — A shortcut for paging someone. Append the name of the
player you want to page directly after the ' character:
"Klaatu Hi! It's been ages! How have you been?

@ar ent — Tells you an object’s direct parent (as opposed to a list of its ancestors,
which iswhat @ar ent s does).

@efine, @ndefine, @istdefs — For those who program, the @lefine
command lets you pre-define one or more variables, which are then in place

when you run the eval command (i.e. globals). @ndefi ne lets you remove
definitions, and @ i st def s lists what you currently have pre-defined.

Politically Correct Featureful Player Class Created Because Nobody Would
@Copy Verbs To 8855 (#33337)

This player class enables you to refuse a couple of additional actions from

players. @efuse flanes from <person> inhibits your reading posts from said
person on public mailing lists. Instead of the body of the message, you will see
something like:

[Flane from ReaDi nG (#61050) skipped: 133 lines.]

If curiosity gets the better of you, you can either @inr ef use fl anes from the
person, OR use @eek to look at the message and see what it actually says.

mu — This stands for “murmur”. It’s an alternate form of whisper, whose syntax is like
page. nu Yib Shall we withdraw to the draw ng roonf isthe same as
whi sper "Shall we withdraw to the drawing roonP" to Yib. The
advantage of the first over the second is that it’s shorter to type, and you don’'t
have to put the text to be whispered in quotes.

@vat ch — This command tells you when an idle player becomes active, again. When
the player does become active, the system prints eir name enclosed in square

brackets on aline by itself:
[Yib's Assistant]
It is possible for a player to detect when you start watching em (by modifying eir
;titleverb).
got o — This command has been disabled, but is documented here as an item of
historical interest. One could typegot o <l ocat i on> and be caused (if possible)

to walk to the location using exits rather than by teleporting. The verb has a
comment indicating that it was disabled because it was “too spammy”.

230 LambdaM OO Reference

mailto:@undefine
mailto:@listdefs

<pl ayer> <text> — This is an enhanced version of the shortcut page verb. It
records the last person you paged, so that subsequently you can omit eir name:
"Kirlan Fee, Fie, Fo
" Fum

Kirlan would see both lines as a regular page from you.

@c- news — This was away for the author of this player class to simulate a new news
item, but only for members of this player class.

@et-tell-filter, @nset-tell-filter, @ell-filter — A tell filter is an
object which can intercept text that you are about to see and modify it in some
way before you see it. One might use one, for example to prepend the name of
the person typing, if it doesn’t appear in the text itself, or to add a time stamp to
evary linee @et-tell-filter designates such an object. @nset-tell -

filter ceasesto use your current tell filter. @ell-filter tellsyou what tell
filter you are currently using.

@c- opti ons — This player class uses an options package similar to the mail-options
package. The@c- opti ons command shows you what the options are and how
you have them set. |In particular, you can choose to set a crosspost limit (ignore

messages on mailing lists if they’ve been cross-posted to more than a specified

number of lists). You can also have the system ask you for confirmation before

displaying along mail message.

Here's an odd note: The Schmoo class, #4803, has a shout verb. #33337 isn't
Schmoo class, but was able to intercept Schmoo shouts. The veb
:who's_infidel _sline fingered those non-Schmoos who intercepted Schmoo
shouts. Seealsohel p pc-index. | don’'t know why it’s called “Politically Correct”.

Generic Super _Huh Player (#26026)

This player class offers the very helpful facility to “note down” object numbers
for future reference. In some cases you can refer to these objects by name instead of
number. For example, if you type @ enenber #2031, which is Yib's Guide to
Interesting Places, you can type r ead gui de at any time and read the current page,
even if the guide is on its shelf in the library. Unfortunately, this only works some of
the time (because of how the parser makes decisions about what object you really
mean when you type a command).

@ emenber — Thisis how you “note down” an object’ s number for future reference.
@nown — Lists those objects that you have opted to remember
@ or get — Remove an object from your list of known objects.

LambdaM OO Reference 231

mailto:@unset-tell-filter
mailto:@tell-filter

Detailed Player Class (#6669)

The detailed player class lets you define a detail on yourself, so that if your
description mentions a snazzy belt buckle, you can make it so that the command
| ook buckl e on <you> tellsthe person looking some details about the belt buckle.

@etail — This command lets one add, change, or remove a detail. Type hel p
#6669: @let ai | for the various syntaxes.

@let ai | s — Thiscommand lists the detail s you have defined on yourself.

Other Player Classes

Here we come to the major branch between general player classes. Most people
describe the division as being between SSPC (#49900) (a descendent of Sick's
Sick of Spam player class (#59900)) and Super-Schnoo (#4803) (a
descendent of the Piping Player dass (#20781)). Different players find
different advantages in each. (The reason why an object can be a descendent of an

object with a higher number than itself is because object numbers are recycled and re-
used.

Feature objects were a later invention than player classes, so in the early days the
commands available to you were mostly a function of what player class you chose.
This al happened before my time, but by many accounts there was some strong
competition between player class authors to garner users. The two branches provide
several of the same functions but do so in different ways. These include morphing,
keeping a list of pals so that you can see which of your pals are logged on, etc., and
answering machines (a much later addition). The Schmoo player class also provided
the facility to define various descriptions associated with various states of undress,
and has what is called “ Schmoo shouting”, enabling users of the Schmoo player class
to broadcast remarks to one another.

The magjor drawback to fancy player classes, but particularly ones that provide
morphing, is that they take up a lot of quota. Aside from that, it’s probably just a
matter of taste regarding the syntax of the commands provided. Most of the
functionality is the same, now, between the two branches, and with few exceptions
most new commands are provided via feature objects, instead.

An Overview of LambdaM OQO'’s Political System,
and How to Use It

This section outlines the history of how LambdaM OO has been governed from
its inception to the present, and gives a detailed description of how to use the
mechanisms of the ballot system that we currently have in place. (For those who are

232 LambdaM OO Reference

curious about what kinds of issues arise to vote on, a compendium of all closed
ballots (as of May 10, 2003) is provided in Appendix E.)

Historical Overview

The birth of LambdaM OO is generally recognized as the date on which Haakon
(#2), the ArchWizard, first connected, which was October 31, 1990. At the very
beginning, LambdaM OO consisted of just afew friends, and the differences that arose
were simply worked out informally. Asthe MOO grew in size, it ceased to be a place
where everyone knew everyone else. When differences arose, people tended to turn
to the wizards to help them sort out their squabbles and/or make an arbitrary
decision, and the wizards tended to try to assist. Eventually, the wizards asked
Haakon to get them out of the “discipline/mannerdarbitration” business, and in
December of 1992, Haakon posted “LambdaMOO Takes A New Direction”, (see
Appendix C) in which he decreed that the wizards would henceforth serve strictly as
systems programmers and that players at large were now free (whether they wanted
to be or not) to sort out their own differences.

Some time later a character going by the name of Mr_Bungle depicted some
other characters as brutally sodomizing themselves in the Living Room. This was
decried by many as abusive and intolerable, and there was much discussion on public
mailing lists (mostly * Soci al - | ssues) of what to do. In this particular instance, a
wizard eventually took it upon emself to @ oad Mr_Bungle, but the fact that the
populace had no mechanism with which to govern themselves suddenly became clear.
Haakon then created a petition and ballot system, intended to provide a way for the
citizenry to express their collective views to the wizards and compel them to take
specific technical actions intended to have social consequences. (See help
petitions-notivation for some additional details about the particulars of how the
petition system was implemented.) Haakon’'s original vision was that the
petition/ballot system as given would be used by the populace to bootstrap a more
sophisticated system. This has not yet come to pass.

The first petition to ﬁass as a ballot was *Bal | ot: Arbitrati on. It called for
the creation of a system that players could use to resolve disputes among themselves,

including a system for volunteer arbitrators and a system for making “minor”
changes to the arbitration system itself without having to go through the larger
petition/ballot process. Every petition is subject to vetting by the wizards as one of
the requirements it must meet before being promoted to a ballot, and today that
petition would probably be denied vetting for being “insufficiently precise for the
wizards to know how to implement it.” *B: Ar bi trati on was authored by a wizard,
though, and everyone was optimistic, and no one foresaw the pitfalls that were in
store. Asit turned out, the arbitration system was fraught with difficulties, and often
used for “playing games with the system” rather than in a sincere effort by players to
resolve their differences with one another. *B: Arbitration was repealed in
February of 1999; as of May 10, 2003, no conflict resolution system has yet been
legislated to take its place.

LambdaM OO Reference 233

The wizards tried very hard to restrict themselves to purely technical actions and
not take any actions that would have social consequences, but with LTAND Haakon
had, in fact, made a promise on the wizards' behalf that was impossible to keep.
Many technical decisions have social consequences, and a choice not to execute some
technical action can also have social consequences. Too often the wizards found
themselves in a position of “damned if they did and damned if they didn’'t,” and the
damnations finally became more than the wizards were willing to bear. In May of
1996, the LambdaMOO wizards collectively authored a document titled,
“LambdaM OO Takes Another Direction”, commonly known as LTAD (see Appendix
D for the full text). This document acknowledged that the line between technical
and social decisions often is not a clear one, acknowledged that the wizards had (of
necessity) made decisions in the past that had socia consequences, and
acknowledged that they would continue to do so. LTAD formally reintroduced
wizardly fiat. In an effort to counterbalance the reintroduction of wizardly fiat, the
wizards also announced the creation of a special “standing” petition, * P; Shut down.
Should it pass as a ballot, the wizards pledge to shut LambdaM OO down for good.
*P: Shut down has come to ballot (and failed) on two occasions. This special petition
is pre-vetted, and furthermore requires only a simple majority to pass. The reason for
requiring only asimple majority is that most of the wizards felt that if more than half
didn't want LambdaM OO to keep going, they’'d just as soon pack it in, themselves.
(The author of this book was a LambdaM OO wizard at the time and participated in
the crafting of LTAD.)

A Citizen’s Guideto the LambdaM OO Petition System

But First, For Those Who Just Don’t Want to be Bother ed

LambdaM OO’ s petition system has a variety of mechanisms in it to ensure that
players are adequately notified of open ballots and current elections. For some, thisis
too much of a good thing. Those who do not wish to be notified or lobbied should
type the following commands:

@etition-option +noannounce
@etition-option +noannounce_ARB

New ballots and ARB €lections are announced in *news. In addition, each time a

player logsin, eis notified of ballots and/or ARB ballots on which e has not yet voted.
These two petition options suppress these notifications. (You will still see the * news
entry.)

@efuse politics for <duration, e.g. 100 years>
Refusing politics is an advisory act rather than a prohibitive act in that people

are supposed to refrain from lobbying you if you have @ ef used politics, but this is
not programmatically enforced. An older system depended on players adding a

.apolitical property or :apolitical verb to themselves, and some players still
utilize thismethod. Seehel p apolitical.

To seeif someone else has refused politics, type:
@efusal s for <player>

234 LambdaM OO Reference

TheParticulars

Only primary, non-guest, non wizard characters may participate in the petition
system. The voting age is 30 days from the time of first connection.

A player must be at least one year old to run for the Architecture Review Board.
A player must be at least four months old to run for the office of reaper.

A petition must acquire at least 10 signatures before it may be submitted for
vetting.

The number of signatures required for a petition to be promoted to a ballot is
10% of the average of all votes for and against all previous closed ballots, not to be
fewer than 50. The number of signatures required to promote a nomination petition

to aballot is 50. For a nomination petition to be promoted to a ballot, the nominee
must be one of the signatories (indicating acceptance of the nomination).

A regular ballot requires a 2/3 majority of yes/no votes to pass. There is no
minimum number of votes, i.e. no quorum.

For elected offices, those players who receive more “yes’ votes than “no” votes
are eligible, and ballots are ranked, in decreasing order, by the difference between the
number of “yes’ votes and the number of “no” votes. Of those, the top <n> are
selected, where <n> is the number of vacancies on the board for which elections are
being held. (Seehel p @ARB- bal | ot s.)

Votes are secret. Upon closure of a ballot, the object numbers of those who
voted yes or no are stored on a randomized list, though which way a person voted is
not stored. The list of those who voted is readable only by wizards, and is kept only
for reference should there be a case involving accusations of multiple-character
voting.

Time limits for petitions and ballots:

From first creation to author’s No expiration.
signature
From author’ s signature until 14 days.

submission for vetting (10 or more
signatures required)
During vetting No expiration.

Signatures may not accrue while a
petition is waiting to be vetted.

From vetting to acquiring enough 90 days.
signatures to promote a petition to a

ballot

From promotion to a ballot to ballot 14 days.
closure

LambdaM OO Reference 235

Should the system crash, the clock is considered to be stopped. Petitions and
ballots have the duration of the down time added to their expiration times; players
have the down time subtracted from their age for purposes of participating in the
political system. (Thisis why the @ge command gives a second (younger) age “for
official purposes’.)

Vetting Criteria

Before a petition may become a ballot, it must be vetted by the wizards. The
vetting criteria are as follows:

A petition must be:
* Appropriate according to the guidelines givenin hel p petiti ons (see below).
« Sufficiently precise and detailed in its description of the desired effect or facility

that the wizards can understand how to implement it. (It is best, however, if you
do not specify a particular implementation.)

 Technicaly feasible for the wizard to implement.

. Il\\lll%oll kely, in the wizards opinion, to jeopardize the functional integrity of the

* Not likely, in the wizards' opinion, to bring the wizards, Pavel Curtis, Stanford
University, or Placeware, Inc. into conflict with any rea-world laws or
regulations.

+ Consistent with passed ballot #55018, which states, “No petition may call for any
change which results in differential treatment between those who sign it and

those who do not.”

Thefollowing isset forthin hel p petitions:

Petitions and ballots are for proposals that the wizards perform some set
of purely technical actions that only wizards can perform, where those
actions are intended to address some social goal. For example, the actions
might be intended

e To directly achieve some social goal (such as banishing some individual
from the MOO or removing some person from the list of wizards).

* To grant some piece of wizardly power to the general MOO in some form
that’s intended to be used to address social problems in the future (such
as creating a truly escape-proof jail or giving players a way to temporarily
banish each other from the MOOQO).

* To restrict some or al plgyers in some way that is believed will help to
achieve some social goal (such as keeping guests from logging in

anonymously or making it impossible for players to print out messages
containing certain words.

 To modify the petitions and ballots mechanism itself in some qualitative
way (such as changing it to require fewer signatures on petitions or only a
simple majority on ballots).

236 LambdaM OO Reference

Petitions and ballots are not for simple requests that the wizards fix some
bug in the core nor, at the other end of the spectrum, are they for proposals
that involve the wizards' having to exercise some kind of social judgement
role (such as demanding that the wizards banish anyone who's being
abusive).

Participating as a Voting Member of the Populace

Petitions and ballots are objects, owned by the system character, Peti ti oner
(#4). As such, each has its own object number, by which it can aways be
referenced, but one may also reference a petition or ballot as follows:

*Petition:<nane or alias>

*P: <nane or alias>

*Bal | ot : <nane or alias>

*B: <nane or alias>

*ARB- Petition: <pl ayer nane>

* ARB- P: <pl ayer name>
*Reaper-Petition: <pl ayer name>
*Reaper - P: <pl ayer name>

The generic ballot is a child of the generic petition, and so all commands that
can be used on or with petitions can also be used on or with ballots, though some
may not apply and are disabled as appropriate. (You can’'t sign a ballot, for example,
but you can list signatures on petitions or ballots.)

A petition’s or ballot’s status is recorded in its description. This includes the
number of signatures acquired and required, whether it is up for vetting, expiration
date, etc. As pe the naming conventions listed above, you can type | ook
<petition or ball ot>toget some basic information about it.

To see alist of petitions or ballots, type one of the following:

@etitions [all | public | signed | vetted]
@allots [all | open | closed | passed | defeated]
@r b-petitions

@rb-bal lots

@ eaper-petitions
@ eaper-ballots

Use the commands decline <petition> and undecline <petition> to
control which petitions display when you use the @et i ti ons command.
You can typeread <petition or ballot> toview itstext. You can mail a

etition or ballot’s text to yourself by typing mai | e <ﬁet ition or ballot>.
i zards sometimes add i mplementation notes to petitions they have vetted. Y ou can

read these notes (if present) by typingi npl <petition or ball ot>.
Petitions and ballots are also mailing lists. You can read mail on them and send
mail to them just as you would any other mail recipient.

LambdaM OO Reference 237

To sign a petition, type si gn <petition>. If you have a feature object that
depicts you holding up a sign with text on it, you may need to use one of the
alternate forms of this command, @i gn <petition> or psign <petition>. You
can remove your signature from a petition a any time by typing unsign
<petition>.

If you are one of the first ten people to sign a petition, i.e,, if it has not yet been
submitted for vetting, then ideally you are signing to indicate not only that you
think the measure deserves to be brought before the LambdaM OO populace as a
ballot, but also that you have reviewed it and believe that it meets the vetting criteria.

To vote on aballot, type one of:
vote yes on <ball ot>

vote no on <ball ot >
abstain on <ball ot>

Y ou may change your vote as many times as you wish, up until the time a ballot
closes. Note, you must manually cast your vote even if you have signed the petition
—avoteis not automatically cast for you.

There is an @etition-options package for petitions that works along the
samelinesas @mi | - opti ons, @dit-options, and @li spl ay- opti ons:

@etition-options Display all your current
petition-option settings.
@etition-option <option> Display the current setting
for a particular petition
option.
@etition-option petition_order=created Controlsthe order in
@etition-option petition_order=witten which petitions are
@etition-option petition_order=vetted displayed.
@etition-option petition_order=witten
@etition-option petition order=stages
@etition-option signature_order=signhi ng | Controlsthe order in
@etition-option signature_order=name which petition or ballot
signatures are listed.
@etition-option +noannounce Controls whether or not
@etition-opti on —noannounce you will see an
announcement when you
log in of open ballots on
which you have not yet
voted.
@etition-option +no_announce_ARB Controls whether or not
@etition-option -no_announce_ARB you will be notified when
you log in of ARB ballots
on which you have not yet
voted.

238 LambdaM OO Reference

@etition-option subscribe=query Controls whether you will
@etition-option subscribe=al ways always or never be
@etition-option subscribe=never subscribed to a petition’ s
mailing list when you sign
it, or asked if you wish to

subscribe.
@etition-option subscribe ARB=query Same as above, except for
@etition-option subscribe_ARB=al ways ARB nominating petitions.

| @etition-option subscribe ARB=never

The LambdaM OO mailing list *conmi tt ee receives automated notifications of
new petitions and changes to the status of existing petitions and ballots.

Creating Petitions

This section describes the sequence of steps for creating a petition and getting it
promoted to a ballot.

The first step is to make a petition object using the @rake-petition
command. The syntax issimilar to @r eat e:

@rake-petition <nane>, <alias> <alias> ... , <alias>

This will create a petition object, owned by Petitioner (#4). The petition and its

associated mailing list do not come out of your quota. You may @ enhame your
petition at any time without losing signatures. (Note, this is not the same as giving
your petition a new title (see below), which does erase all signatures.) | recommend
giving your petition a short name (even an abbreviation) because the is the name by
which people will reference it. You will have a chance to put a longer line of
descriptive text in thetitle.

Y ou may only have one petition at atime.

At any time up until the petition is promoted to a ballot, you may type burn
<petition>anditwill berecycled.

Next, give your petition a descriptive title. Use the retitle command even when
you are giving your petition atitle for thefirst time:

retitle <petition> as <descriptive title>

The first time you give your petition a title, it won't have any signatures on it.
You can retitleit later, if you choose to, but all signatures on it will be erased.

Next, edit the text ofaP/ou_r petition by typing @ot edit <petition>. Editing
the text will also erase al signatures. Many petition authors tend to sign their
petition at this point and start collecting feedback and signatures (no one may sign a
petition until its author has signed it). | recommend against this, because then every
time someone makes a good suggestion and you change the petition, all the
signatures are lost and you have to collect them all over again. One or two rounds of

LambdaM OO Reference 239

mailto:@make-petition

this isn’'t bad, but more than that and people tend to lose enthusiasm. Instead, |
recommend that you type:

post <petition>

This will cause it to be listed whenever someone invokes the @etiti ons
command, even though you haven’'t signed it, yet. You can type unpost
<petition> at any timeif you change your mind.

After you have gotten as much feedback as you think you’ re going to at this early
stage, and incorporated as many changes into the petition’s text as you choose to,
then is the time to sign it and start asking others to sign it, too. Once a petition’s
author has signed it, the clock starts: You must get at least 10 signatures in order to
submit it for vetting, and you have fourteen days in which to do this. If you can’'t get
ten signatures (including your own) within that time, the petition will expire and
automatically be recycled.

Once you have ten signatures, you may then submit the petition for vetting by
typing:
submt <petition>

A mail message indicating that you have requested vetting will automatically be
sent to the petition mailing list and to *wi zards. At this point, the clock stops:
Petitions do not expire while awaiting vetting. Neither can they gather more
signatures.

Once the petition is vetted, the clock starts again. The next thing to do is gather
the remaining signatures needed to promote your petition to a ballot. The number
usually hovers around 50. You can find out exactly how many more signatures it
needs by looking at it. It’simportant to remember that not everyone is open to being
lobbied to read and sign pending legislation. Before approaching someone, you

should type @ ef usal s for <g| ayer > and not approach em if eisrefusing politics.
If you are using a program to lobby people, it should include a call to:

$code_utils:verb_or_property(<player>, "apolitical");

and not bother em if you get a truth value. Y ou have 90 days to obtain the requisite
number of signatures to promote the petition to ballot status, or else it will expire
and automatically be recycled. (As with the number of signatures, you can see how
much time remains on the petition by looking at it.)

Once your petition is promoted to ballot status, you are then free to create a new
petition.

In addition to the @etition-options outlined above, there are a couple of
options that petition authors can set on petitions themselves:

@ptions on <petition> Display current option
settings.

@et-option notify on <petition> If thisis set, you will be

@inset-option notify on <petition> notified whenever someone
signs or unsigns the petition.

240 LambdaMOO Reference

@et-option autosubnit on <petition>
@inset - opti on autosubnit on
<petition>

If this option is set, the
petition will automatically be
submitted for vetting when it
acquires 10 signatures.

Nomination Petitions

Elections are announced on * news. To nominate someone, type:

@on nate <player> for <office>

The possible offices are ARB, Reaper, or Registrar.

Nomination petitions do not require vetting. They are promoted to ballot status
automatically when they get 50 signatures, but only if the nominee emself has signed

it, indicating that e accepts the nomination.

Keeping Up with it All

The mailing list *comittee provides a daily update that includes (as
applicable) new petitions, burned or expired petitions, changes to a petition’s status
(e.g. submitted for vetting), promotions to ballot, and signature changes.

LambdaM OO Reference 241

Glossary of Terms

@— By convention, the first character of a command that transcends the MOO’s
virtual reality. One of many descriptions of a MOO is “a text-based virtual reality”.
MOQOs have themes, or general motifs, such as “a large mansion and its grounds”.
Within this text-based virtual reality, players can talk with one another, gesture
(emote), move from room to room, pick up and drop various objects, and so on.
These are sometimes referred to as VR actions. There are also several commands that
one can issue that break with or transcend the virtual reality: @ho lists al the
players who are logged on, for example, and @ oi n moves you to someone else's
location on the MOO. | call these commands meta-VR.

— Every object on a MOO has a unique number, which is indicated by the “#” sign.
There is much you can do without paying attention to object numbers, but an object

can always be referred to by its number. If you are not holding an object or in the
same room with it, then (with a few exceptions) you must refer to it by number for
the system to figure out which object you mean.

ARB — The Architecture Review Board. In December, 1991 the LambdaM OO wizards
created the Architecture Review Board to assist them in assessing who should receive

rbn%re quotato build with. In July, 1993, a ballot passed that made the ARB an elected
ody .

al i as — Every valid object in the MOO has a name. Objects may have additional
aliases, which are other names (often shorter) that can also be used to refer to an
object. An object named “a bi g, black, hairy spider” might have the alias
“spi der”, for example. One way to see an object’s aliases isto exam ne it. You can
add an alias with the @ddal i as command; you can remove one with the @ nal i as
command. Seealsohel p @ enane.

ar gunent s — arguments are pieces of information that are provided to a command,
program, verb or subroutine so that it can do itsjob. If you look at the room you are
in by typing the word | ook by itself, we say that you have invoked the | ook verb
with no arguments. If you type | ook hat, then the word “hat” is an argument to
the | ook command. If you typel ook rabbit in hat, then the words “rabbit”,
“in” and “hat ” are arguments to the | ook command. In such a case, “rabbit” is
the direct object, “i n” is the preposition, and “hat ” is the indirect object. Some
commands always take the same fixed number of arguments. For example, the
command @o aways takes one argument, the room to which you wish to travel.
Other commands can take an arbitrary number of arguments. For example, go needs
at least one argument, but is able to take several. go nort h will move you from your
current location through the exit named “nort h”, if there is one. If you are in the

Living Room on LambdaM OO, typing go north east east up east north will
move you through successive exits until you arrive at the library.

argunment specifiers — When a programmer first creates a verb on an object, e
must, as part of the command that creates the verb, specify what arguments the verb

takes if any. This is done by typing a word that stands for the direct object of the

243

mailto:@rename

command, a word that stands for a preposition, and a word that stands for the
indirect object. If | am creating a trophy, and want to write a verb to award it to
someone, | might type the following:

@erb trophy:award this to any

“Awar d” isthe name of the verb itself. “ Thi s” means that when someone types the
award command, the trophy (“t hi s”) will be in the position of the direct object.
“To” is the preposition, signifying that the trophy will be awarded to someone, not
from or about em, for example. Last, “any” indicates that the trophy can be awarded
to anyone or anything. Thewords“thi s to any” arethe argument specifiers.

background task — A foreground task is a task that executes “while you wait”.
There are some things that the computer does independent of a person typing in a
command and waiting to see the result. Suppose | have a MOO timer, and | type the
command set timer for 5 mnutes. The computer might print to my screen,
“Timer started” and that exchange represents a completed foreground task. |
proceed to chat with my friends on the MOO. Each invocation of say and enot e
also represents a (short) foreground task. Meanwhile, the timer program is counting
off the seconds, up to five minutes, without tying up my screen. That is, | don’t have
to wait the five minutes before | can type something else. The counting off of the
seconds is said to be accomplished “in the background”, or is described as a
background task. When the five minutes are up, the timer prints the line, DING 5
m nutes are up! tomy screen, and the background task is ended. (See also task.)

bash — An offline par\'?/ or other gathering of MOOers. Sometimes bashes are given a
qualifying prefix. “NYE-bash” would be a New Year’'s Eve bash. “Sushi-bash” would

suggest some MOQers going out for sushi together. Usually the term “bash” implies
that any MOOer who is told the time and place is welcome to attend.

' bot —’Bot is short for “robot”, and it typically refers to something that acts like a
player but isn't aplayer. There is afurther refinement, which is whether the bot is an

actual player object or not. Some people have written programs that log on to
LambdaM OO (using a player name and password). These programs maneuver the
player-object through the MOO, and are programmed to recognize and react to
conversation and perhaps other text generated by human typists. Another kind of
"bot is anon-player object within LambdaM OO that is controlled to a greater or lesser
extent by a human typist but which is not in fact a player object. These are
sometimes also called puppets. This kind of 'bot is easier to identify, because if you
examine it, you'll see that it is not its own owner. Rea players own their player
objects; puppets and other automata do not.

built-in function—A program isa collection of commands which are executed in
a particular order. These commands can either be other programs (often called
“subroutines’), or any of a subset of commands that are intrinsic to the system (in
other words, commands that are provided by the server rather than written in MOO
code). Some examples of built-in functions:

| engt h(<i tenp)

pl ayers()
connect ed_pl ayers()

244 Glossary

gP/t e — A byte is a unit of computer storage space. Typically, one letter of the
phabet takes up one byte of space.

cal I — Suppose you are making chocolate soufflé. Recipes have severa steps, and
sometimes refer to other recipes, e.g., “Make a béchamel sauce (see page 257).”
Similarly, commands (verbs) can — and usually do — consist of several steps, often
referring to other verbs. These other verbs are sometimes called subroutines, and
when a verb asks the computer to execute one, we say that the verb calls the
subroutine.

channel — Many MOOs have a special communications facility called channels. A
fair analogy might be to compare channels to Citizens' Band radio. One connects to

a particular channel, and can then listen to everyone who is talking on the channel
and can transmit on the channel without being co-present in the same room(s) as
others who are also connected to the channel.

character — A character is another name for a player, which is an object that
represents a typist within the context of the MOO. Sometimes the two terms are
combined: player-character. The distinguishing feature of a player-character object,
unlike every other kind of object, is that the built-in system function

i s_pl ayer (<object>) returnsi.

chil d — With the exception of the root object (#1), every valid object has all the
same properties and verbs as another object, said to be its parent. An object is said to

be a child of that other object. An object can have many children but only one
parent..

cl ass — When an object is intended solely to serve as the parent of other objects
rather than being used itself, it isreferred to as ageneric or asaclass. Things that have

that object as a parent or ancestor are said to be of that object’ s class.

command — A command is a word, sometimes with accompanying arguments, that a
typist enters with the intention of obtaining some result or causing some effect. All
commands are verbs, but not all verbs are commands. This is because some verbs are
only meant to be called from within other verbs and not directly by a typist.
Examples of commands are:

| ook e
@ho
put rabbit in hat

command | i ne — When you type a command, you are said to type it at the command
line. Some verbs (e.g. say, enote, page, @oin) are intended to be invoked as
commands, and these are sometimes called command line verbs Other verbs are
meant to be called only from within other verbs. These are called subroutines

celonnect ed — A room is said to be connected if you can get to it without having to
teleport.

cont ent s — Every valid object in a MOO has a property that designates its location
(given in terms of an object number), and another property that designates its
contents: things whose location is in turn the object in question. If A contains B,

then B appearsin A’s. cont ent s property, and the value of B’s . | ocati on property
is A. A refinement to this concept is that the notion of containment extends to

Glossary 245

contents of contents. Think of nested boxes. If A contains B and B contains C, then
even though C doesn’'t appear directly in A’s . cont ent s property, C is said to be in
A’'s containment hierarchy. Objects cannot contain themselves, nor can two objects
contain each other simultaneously or otherwise violate the containment hierarchy.
(The MOO has no formal way to designate sizes of things, so a tiny little jewel box
can easily contain a hippopotamus!)

core — Also referred to as the core database. A brand new MOO that is%ust up and
running consists of two major pieces, the server and the core database. The server is

the actual program that runs on the host computer. The core database is that set of
objects within the MOO that every MOO starts with. The core database includes
several objects that are sets of utility programs, written in the MOO programming
language, which are used in making more complex objects and MOO programs. The
core also includes #2 (the player that is the ArchWizard), the system object, the
generic room, the generic exit, and various other items. The core includes a verb,
#0: core_obj ect s, that defines the list of objects that comprise the core database.
This book confines itself to MOOs based on LambdaCore. Other available cores
include JHCore and EnCore.

dat a t)c/jpes — The MOO programming language recognizes six different kinds or
types of data: integers, decimal humbers (also called floating point numbers), character

strings, objects, error codes, and lists.

dat abase —When used in the context of a MOQ, the database refers to the collection
of all the existing objects along with their associated properties and verbs. The server
loads the database to run the M OO.

defi ned — Every verb is associated with an object, either a player, a player class, a
place (room), or a concrete object. It is associated with this object when it is first
programmed. (In the case of rooms or players or articles, the verb usualy
manipulates that object in some way.) We say that a verb is defined on the object to
which it was attached at the time it was programmed. We care about which object a
verb is defined on when we want to list it to see how it works, or perhaps fix a bug (if
the verb is defined on an object that we own).

descended from— An object is said to be descended from another object if the other
object isin its chain of parents.

expressi on — An expression is a combination of characters that, when evaluated as a
piece of MOO code, generates a value.

exit —An exit isa specia kind of object that doesn’t exist in any particular place per

se (its actual location isusually #-1 ($not hi nlgl) , but that is associated with a room,
its source. When you are in aroom, there are what are called obvious exits. When you
type the name of an obvious exit, you are transported to that exit’s destination, and
that isreferred to asinvoking an exit.

fertil e — Every valid object on LambdaMOO has a property that indicates which
object isits parent. An object’sinitial parent is specified when it is created. Y ou may

create a child of an object you don’t own if and only if the (potential) parent object is
fertile. For an object to become fertile, its owner must make it fertile using the

@hnod command.

246 Glossary

fl ag — A flagisakind of variable whose value is either TRUE or FAL SE.

foreground task — A task that executes “while you wait”, typically the result of
typing in acommand. See also background task.

forked task — Thisisanother name for backgr ound task.

fork bomb — A fork bomb is a program that generates more and more forked tasks
until the system is overloaded. The system becomes terribly lagged, then grinds to a
halt. A fork bomb is usualy viewed by a MOO’s wizards as a “denia of service
attack” and its perpetrator, when found, may have eir programming privileges
revoked. On rare occasions, a nhew programmer will generate a huge number of
forked tasks inadvertently. If the wizards believe this to be the case, there is usually
no punishment beyond disabling the offending verb and asking the programmer to
be more careful in the future.

—To ga(T‘] someone is to indicate to the system that you do not wish to see any
text that results from the gagged player’s typing anything. Other people will still see

the gagged player’ s output. See hel p @ag.

ganme nast er —Inthe LambdaM OO RPG, one who has programming privileges. (See
aso G and_Master.)

generi ¢ —An object that exists solely to be a parent of other objects.

Grand_Mast er — A character on LambdaM OO who owns all RPG objects and has
access to statistics otherwise unreadable to other players (except wizardg. One or
more typists may have and use this character’s password. Grand_Master is used only

for RPG administrative purposes and occasional debugging. (See also gane master.)

gurst — In LambdaM OO parlance, a gurst is a guest whose typist has a registered
player-character. Some players log on as guests in order to circumvent noise

abatement measures. Some do so to rediscover the joys of truly anonymous MOOing
or simply for a change of pace. Some do so because they have for some reason
temporarily or permanently lost the ability to connect as their regular player-
character. Opinions differ on whether unruly behavior or an intent to deceive are
necessary in order for a guest to be considered a gurst.

i dl e — To remain connected without i_nt_era_ctin% It is used as both an adjective and
averb: AcidHorseisidle. AcidHorseisidling. It isnot unusual for a person to emote

. i dl es before paying attention to another window or leaving eir keyboard while still
connected to the MOO.

i nput — information that goes into something, usually a computer program. A

program that sorts numbers, for example, might display the prompt, Enter sone
nunmbers to sort: The numbers that the user types in would be the input. (The
sorted list of numbers would be the program’ s output.)

i nval i d — MOO objects are said to be either valid or invalid. An object is valid if
someone has created it or recreated it (with the @r eat e or @ ecr eat e commands
respectively). An object is invalid if it has been recycled, or if it has never been
created in the first place. (E.g. object #99999999999999999999 is not a valid object
(as of thiswriting).) There are afew objects that exist but are not valid. These usually

Glossary 247

mailto:@gag

have negative object numbers (e.g. #-3), and are used by the system to designate
various error conditions.

i nvent ory — Those objects that a player is holding or carrying.

i nvoke — To cause a command to be executed by typing its name. If there is an exit
in your vicinity named “north” for example, you are said to invoke the exit when

you typenort h.

| ag — A (usually unexplained) delay in the system’s response time. Normally when
you type something in, especially if you're simply saying or emoting something, the
associated text prints out on your screen right away, and if you're in a room full of
active players, text appears at a fairly steady rate. There are a variety of reasons why
someone else's text might be delayed in its appearance: e might have been called
away from the keyboard unexpectedly, e might be thinking about eir response, or
typing in along line, or multi-tasking, or it might just be because of lag. A sure sign
of alag storm is when your own text is delayed in appearing. Sometimes lag isn’t on
the MOQO itsdlf, but is in the network somewhere between the MOO and a typist’s
computer. Thisis usualy referred to as net lag. It is characterized by some MOOQers
experiencing lag and others not.

LambdaCor e — A core database derived from LambdaM OO. (See also core))

$l i mho — The location to which a player is returned when e logs off if any of the
following apply: eir home is $pl ayer_start, eir home won't accept em as a
resident, or eir homeisinvalid.

list — A list is a particular way of representing a set of things in the MOO
programming language. The elements of alist may be numbers, strings of characters,
objects, other lists, or any combination. Lists are designated using curly braces ‘{17,
and their elements are separated by commas. Example: {"This" "is", "a",

"list", "of", "strings" "} The empty list is a meaningful construct in the
MOO programmi ng Ianguage, and is designated with just the curly braces: {}.

lurk — To read a mailing list without posting, to stay in a room without saying,
emoting or otherwise contributing anything, or to listen to a channel without
speaking on it.

mat chi ng — Matching refers to the system associating a name you type in with an
object’s unique number. If you page a particular player (i.e. page nockturtle
Don't you ever sl eep?),thecodefor the“page” command matchesnmockturtl e
to mockturtle’s object number, and forwards the message accordingly. If you are
holding arock and type dr op rock, the system will match the word “rock” with the
rock you are holding and move the rock from you to the room you arein. If you are
holding more than one rock, the system will be unable to match the word “rock” to a
unique object, and you would see, | don't know which "rock" you nean. If
you weren’'t holding a rock at all, The system would display, | see no "rock"

here. (The first case is referred to as an ambiguous match and the second is a failed
match.) In general, in order for the system to match a name that you type with a
unique object, you either have to be holding the object or in the same room as the
object. Exceptions to this include many of the commands that refer to players (e.g.

248 Glossary

page and @ oi n) since player names are unique, and also the @o command, which
can look for the name of aroom in aplayer’s. r oons database.

mav — According to the FAQ found at http://www.mudconnect.com/mudfag/mudfag-
pl.html#g30, Mav was a TinyMUDder who would sometimes accidentally emote
something to an entire room when he meant to whisper or page it. The word has

come to mean any mix-up between say, enot e, r enot e- enot e, whi sper, page, etc.

meta-VR — Actions or commands that “break” the virtual reality and call attention to
the fact that you are using a computer program and not areal (i.e. tangible) mansion,
castle, cave system, what-have-you. By convention, most non-VR commands on
MOOs begin with the “@ sign, although there are exceptions to this. Some examples
of non-VR commands would be @ho, @oin <person>, @end <person-or-
mai | i ng-1ist>.

nor ph — A morph is an alternate presentation that a player-character may adopt,

while temporarily storing eir original name, gender, and description. An alter ego.
Did you ever notice that you never see Super Man and Clark Kent together at the
same time? They might be morphs of the same person. While a player’'s name,
description, gender, and messages may change when e morphs, eir object number
(and password) remain the same.

nul tipl e characters —Many people choose to have more than one character on a
MOO. Multiple characters are different from morphs in that there are two (or more)

separate player objects with different object numbers; it is more difficult for playersto
determine that multiple characters are controlled by the same typist than it is with
multiple morphs. LambdaMOO permits multiple characters, but they must be
registered as such. Among other things, only one of a typist’s multiple characters
may participate in the political system there.

mul ti-tasking — This term refers to a computer that is executing more than one
task at the same time. Informally, a person is said to be multi-tasking if eir attention
is divided between two more simultaneous activities.

newt — The act of metaphorically turning a player into a newt or, a player who has
had this done to em. The @ewt command, available to wizards only, blocks a
player’s access to the system, either for a specified or indefinite period of time. This
action is typically taken when the wizards believe a player might be a threat to the
system. It is occasionally done for punitive reasons or for noise abatement. It is
possible for a player to effectively newt emself, using the boot _pl ayer () built-in
function within a custom : conf unc verb. (Seealsotoad.)

non- VR — See meta-VR.

obj ect — Objects are the fundamental building blocks of an object-oriented system.

On aMOQO, every object has a unique number (prefixed by the “#” sign), a name, an
owner, alocation, and a property listing its contents.

opti ons package — An options package is a set of commands and data values that
enables you to customize some aspect of your MOOing experience. There are many
options packages that govern how different things work for you, specifically.

Examples of these include mai | - opti ons, to customize various aspects of sending

Glossary 249

http://www.mudconnect.com/mudfaq/mudfaq-

and receiving mail, edit-options, which customize certain aspects of how the
editors work, bui | der - opt i ons, and pr ogr ammer - opt i ons. Options packages can
be associated with player classes, generic rooms, feature objects, or any other kind of
object. There is no single definitive way to list all the options packages available to

you, but they are usually referenced in other objects’ help texts. Hel p opti ons will
giveyou alist of some of them.

out put — The result of (usually) a computer program, which is displayed to one or
more users. Sometimes one refers to a person’s output, meaning that which the
person produces, either manually or with the aid of a program.

par aneters — Limits, usually numeric, that are set in advance. One speaks of
“working within a set of parameters.” Parameters are not the same as arguments:; If
one had a program to sort numbers, the arguments would be the numbers to sort. A
parameter might be the maximum number of arguments the program could or would
accept.

par ent —Seechild.

parser —When you type aline of text, the system has to figure out which segment
of what you typed constitutes the command, and identify the verb to run, the direct

object, the preposition, and indirect object, if present. The part of the system that
doesthisis called the parser.

pl ayer, player-character, player object — An object on a MOO that
represents the VR embodiment of a human typist.

pl ayer class — An object on a MOO that serves as a repository for additional
commands that a player might choose to use. A player adopts a player class by

changing eir parent to the player class. Implicit in this act is adopting all ancestors of
the selected player class as well. There is a calculated risk in adopting a player class
which is that player class owners could theoretically intercept private
communications, and are able to change some of a player’s fundamental attributes.
Such incidents are rare, but one should know the risks going in. (See the section on
player classes beginning on page 43 for more about this.)

$pl ayer _start — The location where guests, new players, and players without an
otherwise-valid home find themselves when they log on.

port — (Think “transport”.) To record all the particulars of an object on one MOO
and use the information to recreate it as exactly as possible on another MOO. One
should ask permission of an object’ s author before porting it.

primary character — On some MOOs, human typists are permitted to have more
than one player character. On LambdaM OO, only one of these has the rights of
citizenship (authoring and signing petitions, voting, etc.). The one with the voting
rights is referred to as one's primary character. Others are referred to as secondary
characters. MOQOs that support multiple characters sometimes have a registry to
differentiate primary and secondary characters, which only wizards can access. By
convention, it is the prerogative of the typist and no one else to disclose secondary
character information. If someone shares such information, it behooves one to treat
it as privileged.

250 Glossary

Hogr am — A sequenced set of instructions that a computer follows slavishlg.
ograms can be very simple or quite complex or anything in between. On a MOO,

the terms program and verb are frequently used interchangeably. (One programs a
verb, but does not verb a program, however.)

pr ogrammer — A person who programs computers. In a MOO, wizards grant what is
called a programmer bit which changes a player’s . pr ogr ammer property from O to 1.
The system then recognizes the player as empowered to write MOO programs. When
contrasted with the term user, this term more specifically refers to the person who
wrote the program that the user is using.

property — A property is a named piece of data associated with an object. Within

the system, properties are designated by the object number followed by adperiod (I'"n)
followed by the property’s name. When speaking of a property independent of the

object it might be associated with, the object number is sometimes omitted. For
example, “Every valid object has the following properties: . nane, .| ocati on,
.contents, .owner.” Players may change the values of many properties on
themselves and on objects they own. Programmers may add new properties to
objects they own. Properties are used to store data that are needed or wanted after a
verb has finished executing, or for data that are needed by more than one verb. (See
asovari abl e.)

puppet — An object that may impersonate a player, whose “hearing” may be
monitored by a player and whose responses may be controlled by a player, but which
is not in fact a player. Butlers and bartenders at various venues are likely to be
puppets.

gueue — A gqueueisalist of tasks that are scheduled to run at alater time.

reap — To expunge a player-character from a MOQO, typically because e has been
inactive for along time.

reaper — Traditionaly, only MOO wizards have the power to reap a player. On
LambdaM OO, certain non-wizard players are entrusted with this task. LambdaM OO
reapers are €l ected.

response | atency — The delay between areal time communication to a player and
that player’s response. Reasons for a lengthy response latency might be thinking

before answering, composing and typing in a long response, being away from the
keyboard, or system lag (which see).

return value — When a verb is called or an expression is evaluated, it aways

returns a value. The return value of the expression 2 + 2 is 4, to give a simple
example. The return value is not always the entirety of the result — sometimes a verb

may also have aside effect. In many cases, the return value is either 1 or 0, signifying,
“The operation was successful,” or, “The operation was not successful,” respectively.
The operation in question is whatever the verb is supposed to do.

r oom— An object that is descended from $r oom More loosely, an object that players
can enter and which looks, sounds, smells, and feels like aroom (i.e. it might as well

be aroom).

.roons database — A property on a player that is a list of object numbers and
names or abbreviations for rooms. One€'s . roons database is used in conjunction

Glossary 251

with the @o command, so that you can type @o |i brary, for example, without
having to remember the library’s object number. You can type @ oons to see your
own . roons database. You can modify your . r oons database with the @ddr oom
and @ nr oomcommands.

RPG — Role Playing Game. Some MOOs have within them a role playing game akin
to the early adventure/dungeon games from which social MOOs arose. On
LambdaM OO, this game is referred to as an “ared’, though various sets of rooms
might be tightly or loosely connected. Briefly, one becomes “initiated”, a process by
which one acquires a surrogate (called a “doll” or “voodoo doll”) on which are
recorded one's victories and defeats over various and sundry RPG opponents. Y ou
train to increase skill and then venture forth to seek treasure, fight various monsters,
and so forth.

secondary charact er — Some MOOs permit a typist to have more than one player
character. Usually the first or oldest of these is designated as on€’ s primary character,
and others are referred to as secondary characters. On LambdaMOO it matters
especially because only primary characters have the rights of citizenship (authoring
petitions, voting, etc.).

server — The program, written in the C programming language (as it happens) that,
when running, is the MOO. This program accepts connections from players logging
on, reads what players type in, and responds accordingly. When you type something
in, part of the program that’s running (the parser) figures out what command you’ ve
typed and which object(s) you're trying to manipulate, and then causes the
appropriate function or verb to be executed.

shout i ng — There are two usages of the term “shouting”. One is to say or emote
something in all capital letters. The other is to broadcast something to everyone who
is logged on, even though they aren’t in the same room. An appropriate use of the
latter would be for a wizard to shout that e is about to reboot the system for some
reason.

side effect — Some verbs just return a value: an arithmetic calculation, the name
or location of an object, etc. But other verbs do things in addition to returning a

value, such as announcing text to a room, or changing something in the database.
These additional things are called side effects.

spam — Copious amounts of unwanted text whose volume is so great it renders its
content usel ess or pointless.

spoof — To cause unattributed text to appear on other people's screens, or the
unattributed text itself. There are three general forms. In one, no player’s name is

included: *“The chandelier falls to the floor with a crash!” In another, the name of
the player perpetrating the spoof does appear in the text, but not at the beginning,
and another player’s name might appear at the beginning instead. The classic form
of thisis, “Werebull causes Yib to fall down laughing,” (with Yib causing this text to
appear, not Werebull). Some players vehemently object to this form of spoof; others
take it in stride. It isin fairly common use. The third form is particularly offensive
and considered officially unmannerly on most MOOs, and this is text that depicts a
player doing or saying something, which text the depicted player did not emself type
in: “Yib produces a previously unseen puke green wiffle bat and proceeds to bash

252 Glossary

herself several times over the head with it.” (Where some unnamed stinker caused
this text to appear and Yib didn’t.) There is no programmatic way to prevent players
from spoofing, but there are a few different ways to detect it, including tell-filters and
the combined commands @ar anoi d and @heck-ful I .

string — A sequence of letters, numerals, or punctuation marks or any combination
thereof. When depicted, a string is enclosed between double quotation mark

characters, e.g., "chocol ate souffle".

subrouti ne — Some verbs are called not from the command line but from within
other verbs. These are called subroutines. Suppose you wanted to make a chocolate
soufflé. The recipe might begin, “Make a béchamel sauce (see page 257).” Y ou would
turn to page 257, follow the directions for making a béchamel sauce, then return to
your place in the soufflé recipe. Executing a subroutine is like making the béchamel
sauce.

synt ax — A generalized expression of the correct usage of a command or subroutine.

syst em— Thisis ageneral term that is used to refer to acg)rogram that is running or a
set of programs working together. It can mean the MOO itself, asin, “What did the
system respond when you typed @arents ne?’ or it can refer to the operating
system on the machine on which the MOO is running, as in, “The system will be
shut down in two hoursfor its ritual Saturday night bath.”

system character — A player object that does not actually have a human typist
associated with it. System characters are typically used to serve as the owner of
record of objects associated with one or another project. On LambdaMOO, for
example, the system character “Petitioner” owns all petitions, ballots, and related
objects.

task — Many players can use a MOO at once. The system receives text that a player
types, processes it in some way, and then (usually) prints text to the player’s screen’in

response. Whenever a player types in a command and the system executes it, that is
called a task, and more specifically, it is called a foreground task Other tasks run “in
the background”, which is to say that the player who initiated this task is free to type
in another command (thereby starting another task) before the background task is
finished. Many objects with “delayed reaction” behavior utilize background tasks.
Here's an example. In the LambdaM OO Living Room, there is a fireplace. You can
pile logs in the fire place, and then light the fire. While the logs are burning, the fire
hisses and crackles and pops, but meanwhile you are free to continue conversing with
others present. It is a background task that causes the fireplace noises to appear
periodically. Every background task has a unique numerical identification number
calleditst ask_i d.

tel eport —Moving to aroom in away that is inconsistent with the Virtual Reality,
e.g. using the @o or @ oi n command.

tell-filter —Every player has averb on emself called “: tel | ”. (Some non-player
objects have: t el | verbs, too.) Thisverb receives as input a string of text, and prints
that text on the player’s screen. A tell filter pre-processes text before it is displayed.
For example, it might inspect the text and prepend name of the player who initiated
it, maybe in angle brackets. So instead of seeing, “Jack causes Jill to fall down
laughing,” you might see, “<Jill> Jack causes Jill to fall down laughing.”

Glossary 253

tick —A tick isaunit of comé)uta_ttion. Just as it takes most people less effort to add 2
+ 2 than to multiply 13 by 8, different tasks take different amounts of computing

power, and these amounts are measured in units called ticks. When you type
something in, 30,000 ticks are allotted to the task. (This is the default. The actual
number may vary from MOO to MOO). Programmers of commands can, if necessary,
ask the system to “take a breath” (metaphorically speaking) and then resume with an
additional allotment of ticks, though this means that a command will take longer to
complete, both in terms of absolute time (seconds) and ticks. Why do we care about
ticks? Because each task gets only its allotted number of ticks before the system
switches to allow the next task some ticks to compute. The computer can only do so
much at once before it starts to get bogged down. When the system bogs down,
everyone experiences lag (increased response time). Good programmers try to write
code that uses a minimum of ticks without sacrificing clarity for future readers or
maintainers.

tiny scenery — Objects (especially rooms) that have descriptions only and are not
in any way interactive, or items that are mentioned in a room’ s description for which
there is no corresponding object.

t oad — The act of metaphorically turning a player into a toad, or, a player who has
had this done to em. The @ oad command, available to wizards only, removes the
flag by which the system recognizes the player-object as a player. This action is a
natural part of the reaping process (but does not constitute all of the reaping process).
On infrequent occasions it is done for punitive reasons. It isimpossible for a player
to toad emself. Contrary to popular belief, toading can be undone, as long as the
player object has not yet been recycled.

toad scar — When a player is @ oaded, one of the side effects is that eir object
number is removed from the list of players returned by the built-in function
pl ayers(). If aplayer isreinstated, eir player number is appended to the end of the
list of players, thus appearing out of numerical sequence, and this appearing out of
sequence is what is meant by the phrase toad scar. To quote Nosredna, a
LambdaM OO wizard, “The difference between toading and newting is that toading
leaves a scar and newting doesn’t.”

troll —Trolls are players who log on and make inflammatory remarks or send
inflammatory posts to mailing lists, caring more about riling people up than the

actual substance of their utterances. Contrary to what one might think, trolls are not
universally reviled. Some players actively enjoy challenging trolls about their alleged
views, and believe that both they and the trolls realize that there is a sort of “dance”
going on. (N.B. The name comes not from unruly fairies, but rather the act of
dragging bait through the water, hoping that fish will bite or chaseit.)

t ypi st — The human being who is sitting at the computer keyboard typing. A single
typist may have one or more player-characters.

user — A person using a computer program. This term is sometimes contrasted with
programmer, the person who wrote the program that the user is using.

valid — A valid object is one that can be used within the MOO in certain
conventional ways. There are certain pieces of information that are attached to every
valid object without exception. These pieces of information include the object’s

254 Glossary

owner (identified by object number), its location (identified by object number), its
contents (a list of one or more object numbers or the empty list), and its parent
(identified by object number). An object that has a number but doesn’'t have these
pieces of information associated with it is not a valid object, by definition. Invalid
objects exist, though, and are used in a number of ways. One of these is $not hi ng
(#-1), which is where rooms are conventionally located. Other so-called invalid
objects signal an error condition, specifically afailed or ambiguous match.

vari abl e — A named piece of data that is used within a verb, but which does not
exist before the verb runs or after the verb has finished executing. Variables are used
to store intermediate results while a verb is in the process of running but which are

needed neither at a later time nor by another verb. (Contrast property, which is
used to store aresult or state for later re-use.)

verb — A verb is a named, ordered sequence of commands that the server can
interpret and execute. Whenever you type a command, for example @wo or put
rock in box, you are asking the computer to do something. You are using a verb.
Some verbs are not intended to be used directly by someone typing at a terminal, but
are intended to be called by other verbs. These verbs generally either produce some
side effect — such as changing some data somewhere, or return some intermediate
result to the verb that called it (such as 3, or an object number) — or both. The beauty
of a MOO is that ordinary players can create new objects and write new verbs on
them, thus extending the richness and variety of the environment.

VR — Virtual Reality. In particular, VR refers to actions that conform to the virtual
reality of the MOO you are using. Examples would be saying things to people in the
room with you, “walking” (i.e. using conventional exits and modes of transportation)

as opposed to teleporting, etc. (See aso net a- VR)
wheel —Aninfluential person. Asin, “bigwheel”.

wi zard — A wizard is a player on aMOQO with special powers not available to ordinary
players, among them the power to create new players, @ewt and @ oad existing
players, read otherwise-unreadable properties on any object, read otherwise-
unreadable verbs on any object, read any message on any mail recipient (including
players private MOOmail, though wizards generally do not exercise this power), view
all background tasks, and kill any background task. Wizards are usually hand-picked
by the person who owns or is responsible for the system as a whole (this person is
referred to as the ArchWizard). In general, one cannot become a wizard simply by
reaching a certain specified level of proficiency, although proficiency is usually one of
the criteria for selecting wizards, along with trustworthiness. Wizards are expected to
use their powers with discretion. If you do not trust the wizards on a particular MOO
to do so, you should not participate on it.

Conversational Typing Abbreviations
addy — address

afaik —asfar as| know
afk —away from keyboard

Glossary 255

atm — at the moment

bbl — be back later

bcnu — Be seeing you.

bf — boyfriend

brb — be right back

btw — by the way

f2f —faceto face

fdl —falls down laughing

filfre — fedl free (to do something or other)

gf —girlfriend

ianal — | am not alawyer

iirc—if | recall correctly

imho — in my humble opinion

imnsho — in my not so humble opinion

imo —in my opinion

istr— | seem to recall

j/k —just kidding

18r — later

lol —laughs out loud

Itns — long time no see

oic—Oh, | see.

otoh — on the other hand

pov — point of view

pp! — people

gooc — quoted out of context

rotfl —rolling on the floor laughing

rtfm — read the manual

R U M or F?— Areyou male or female? (This phrase is now eschewed by
experienced players except to make fun of inexperienced players.)

stfu — shut the fuck up

tmi — too much information

ttfn — Tatafor now

ttyl — Talk to you later

wrt —with regard to

wrte —we regret the error

ymmyv — your mileage may vary

256 Glossary

Addendum to the Glossary

The glossary entries for cal | and subroutine draw an analogy between a
program calling a subroutine and a cookbook referring to one recipe from within
another recipe.

The following two recipes are provided as an adjunct to those entries, just in case
someone actually decided to check my cross-references.

Béchamel Sauce

2 Tablespoons butter Salt
2 Tablespoons flour Freshly ground pepper
1 Cup milk, heated

Melt the butter in a small shallow pan. Stir in the flour and cook, stirring
constantly, until it bubbles a bit, but don’t let it turn brown. 2-3 minutes.

Add the milk a little bit at a time, stirring to incorporate each addition
completely before adding more. You should have a smooth paste. Bring just to a
boil, add salt and pepper to taste, then lower the heat and simmer for 2-3 minutes
more. Remove from heat.

This can be stored for later use. After it has cooled somewhat, place a piece of
plastic wrap directly on the surface to prevent a skin from forming.
Chocolate Soufflé

Contrary to popular belief, a soufflé is not difficult to make, though it takes a
while and must be served immediately. Most of the work can be done ahead of time.

2 1/2 ounces unsweetened chocolate 3/4 Cup whole milk

5 Tablespoons sugar 3 eggs, separated

2 Tablespoons butter 1 teaspoon vanilla

2 Tablespoons flour 1 pint vanillaice cream (for the sauce)
1/8 teaspoon salt

Preheat the oven to 325° F. Butter a 1 1/2 quart soufflé dish and dust with
granulated sugar. Set aside.

257

Put the chocolate, 2 Tablespoons of the sugar and 2 Tablespoons of hot water in
a small pan and heat slowly, stirring occasionally, until the chocolate is melted and
smooth. Remove from the heat and set aside.

Follow the procedure for béchamel sauce (see page 257) using 2 tablespoons
butter, 2 tablespoons flour and 3/4 cup milk, but salting only lightly and leaving out
the pepper. Blend in the chocolate mixture.

Beat the egg yolks well. Stir alittle of the hot sauce into the yolks, then add the
yolks to the remaining sauce. Stir well, then set aside to cool.

This much can be done in advance.

With clean beaters, beat the egg whites until foamy, then slowly add the
remaining 3 tablespoons of sugar, and continue beating until stiff but not dry. Stir
about 1/4 of the whites into the chocolate mixture, then fold in the remainder. Stir
in the vanilla.

Pour all into the soufflé dish, sprinkle the top with sugar, and bake for 35
minutes. Meanwhile, set out the ice cream to melt at room temperature.

Serve immediately with a*cold vanilla sauce” made from the melted ice cream.

258 Glossary Addendum

Appendix A — Summary of Commands

This appendix details various commands that are available on MOOs. It includes
commands available on the player classes and feature objects provided with

LambdaCore, plus others such as those that are available on $r oom

A note about the syntax specifications: Text enclosed in angle brackets “ <>"
must be specified at the time it istyped in, e.g. instead of “<nanme>" you must supply
an actual name, without the angle brackets. Text enclosed in square brackets “[] " is
optional to a command. If you include it, don’'t type the square brackets. A vertical
bar “|” separates either-or cases. For example, @otedit <object |
obj ect >. <pr operty> means you must either supply an object, or an object and a
property name separated by a period (notice that the period isn't in the angle
brackets). Verb names with an asterisk in them (*) may be abbreviated to the part
that comes before the asterisk.

The form of each entry isasfollows
<command> <arguments>
<location/source>
<Usage notes>

Commands are listed alphabetically, ignoring punctuation. Object numbers for
command locations will vary from MOO to MOOQO, so | only give them for commands
that are LambdaM OO-specific. “LambdaMOQ” is abbreviated as“LM”.

@bort
Embedded with certain $conmmand_utils verbs.

When prompted for text input or a yes-or-no answer, you can type @bort to
exit atask entirely.

@bort [<object>[:<verb>]]
LM player class #7069

Causes queued tasks to be aborted. You may specify either all tasks associated
with a particular object, or only tasks associated with a particular verb on an object.

@ddalias <alias>[,...,<alias>] to <object>
@ddal i as <alias>[,...,<alias>] to <object>:<verhb-nane>
@ddal i as# <alias>[,...,<alias>] to <object>:<verb-nunber>

Sl a‘ilﬁ(ra first form adds one or more aliases to an existing object. Note, player aliases
may not have spaces in them.) The second form adds one or more aliases to an
existing verb on an object. The third form unambiguously adds one or more aliases
to a particular verb on an object when there are two or more verbs with the same
name. (Seealso @erbs and @i st #.)

259

@udddi ct <one or nore words>
$frand_cl ass

Adds aword or wordsto $spel | , if present. (Many MOOs have recycled $spel |
because it is cumbersomely large.) Only wizards and players in $spel | .trusted may
use this verb.

@ddf eat ure <feature object>
@dd- feature <feature object>
$pl ayer
Adds a feature object to your list of features. See also @ nf eat ure. A featureis
an object that provides additional commands that you can use.

@ddl ag
LM feature object #26787
Turns off the lag reduction FO and any features similar to it. (Re-)enables @ag,

@heck-ful |, and any other commands that utilize a player's:tel |l verb to filter
and/or otherwise pre-process text beforeiit is displayed to your screen.

@dd-notify nme to <pl ayer>
@dd-notify <requestor> to ne

$mai |l recipient_class i
This verb, uséd cooperatively between two players, allows one player to be

notified when the other player receives MOOmail. The first form sends a MOOmail
message to <player> indicating that one wishes to receive notification. The second
form adds the requestor to a person’s. mai | _noti fy property. This might be useful
if several players shared a group character (such as LambdaMOQO's Grand_Master, for
example) and wanted to be notified if the group character received mail, so as to be
ableto respond to it in atimely manner.

@dd- owned <obj ect >
$bui | der

Adds an object to your .owned_obj ect s property in the highly unlikely event
that it wasn’t added upon creation of the object.

@ddr *oom [<nane>] [<pl ace>]
@ddr *oom [<pl ace>] [<nane>]
$frand_cl ass

Adds a room to the list of rooms you know “by name’. See also @ oons. If
<name> is not specified, then the room is remembered by its actual name (as opposed
to a nickname you provide). If <pl ace> is not specified, then the current room is
remembered.

@ddword <word or words>

$frand_cl ass o _ _)
Add a word or words to your personal dictionary, if one is kept. (This may be

disabled on some MOOs that do not use $spel | .)

260 Summary of Commands

@ge [<pl ayer>]

$pl ayer
‘IYeIIs aperson’s MOO age, i.e. how long it has been since e first connected. On

LambdaM OO, the difference between a person’s actual MOO age and eir official
MOO age is because system down time doesn’t count for aging of people. This arose
from a ballot to “stop the clock” on legidative issues (including the determination of
voting age, etc.).

@nswer [<nessage-nunber>] [on <nmil-recipient>] [sender | all |
followup] [include | noinclude]
$mai | _recipient_cl ass
See @reply.

@rb [all]
LM player class #322

Displays a list of the connected members of the LambdaMOO Architecture
Review Board. If al | is specified, then displays all members, whether connected or
not.

@rb-bal lots
LM player class #322
Lists open ballots for the LambdaM OO Architecture Review Board.

@r b-nonmi nat e <pl ayer >
LM player class #322
Obsolete. See @hom nat e.

@r b-petitions [all]
LM player class #322 o o))
Displays a list of all petitions nominating candidates to the office of

LambdaM OO Architecture Review Board, except those you may have declined. Using
the argument al | shows all ARB nominating petitions.

@rgs <object>:<verb name> [<dobj> [<prep> [<iobj>]]]
@r gs# <obj ect>:<verb nunber> [<dobj> [<prep> [<iobj>]]]

Spr Oghang% the argument specifiers for an exisiting verb. Any omitted argument
specifiers remain unchanged. If no arguments are given, then this prints out the
current argument specifiers for the indicated verb. The second form (@r gs#) is used
to specify a verb by number rather than by name, and is useful if an object has two
verbs with the same name.

@t <object>
$frand_cl ass

Prints a brief list of connected players either with or in<obj ect > (depending on
whether the specified object is a player, some other kind of object, or aroom).

Summary of Commands 261

mailto:@reply

@udit [<player>] [for <string>] [from <object nunber>] [to
<obj ect nunber >]

$bui | der

Shows a list of objects that you own or that a specified player owns, with their
object numbers. You may optionally specify a string, and see a list of objects with
names or aliases that begin with that string. (Note, if the string has a space in it, then
you must enclose it in double quotes.) You may optionally restrict the listing to a
range of object numbers.

@allots [all | open | closed | passed | failed | defeated]

LM player class #322)) .
Prints alist of ballots. If no arguments are provided, prints a list of open ballots,

if any.

@an* <obj ect>
@an! <object>
LM player class #322
Prevents the specified object from entering any room that you own. If used with
the exclamation point, prevents the specified object and any descendents of it from

entering any room that you own. See also @nban.

@anned
LM player class #322

Prints alist of all objects you have banned from rooms you own using the @an
command.

boring [on | off]
LM player class #5803

Boring on makes you impervious to food fights. Boring off enables you to
participate again. Boring with no argument toggles the setting and tells you what the
new setting is. In addition, you will not lose things from your inventory into the
couch cushions if you are boring.

@oot <guest >
LM player class #322

Disconnects a guest player’s connection and disallows new connections from
that guest’s site for the following one hour. You must be at least four months old to

use the command, and must give a reason, which is posted to *boot-10g. The
command must be seconded by another player.

@ug [<t ext>]
$mai | _reci pi ent _cl ass

Sends MOOmail containing <t ext > to the owner of the room you’'rein as abug
report. If you do not specify text in the command line, then you are moved to the

mail room to compose your message (presumably at greater length).

262 Summary of Commands

@ui | d-o*ptions [<option> | <option setting>]

Also: @ui |l do*ptions @uil der-o*ptions @uil dero*ptions
$bui lnggdr without arguments, this command displays your current
bui | der - opti ons (settings that modify various builder commands). Used with a
single option, displays the current setting of that option. Used with an option
setting, modifies the specified option.

@heck- chp*arent <object> to <new parent>

$bui | der
An object cannot be changed to a new parent if that object or any of its

descendents defines a property that is also defined on the intended new parent. This
command prints out all instances of conflicting properties that would interfere with
@hpar ent in this manner.

@h*eck <nunber of lines> [[!]<player>[,..[!]<player>]]
$pl agrer _ _) .
ints a list of “best guesses” about where a line or lines of text originated,

looking for “distrusted” players. By default, you and all the wizards are trusted, but

you may specify additional players to be trusted (<pl ayer>) or not to be trusted
(! <pl ayer >). You must have @ar anoi d on for this to work; LambdaM OOers will
have to type @ 1 ag for @ar anoi d to work.

@h*eck-full <nunmber-of-lines> | <search string>
$pl ayer

Used to identify the source of text that is of dubious origin. @heck-ful | prints
out information about all the verbs responsible for a line of text displayed to your

screen. You may specify either a number of lines or a string of text whose origin you
wish to know more about. You must have @aranoid on for this to work;
LambdaM OOers will have to type @ m ag for @ar anoi d to work.

@heck-p*roperty <object>. <property name>
$prog

Prints a list of all descendents of <obj ect > that define <pr operty nane>. See
also @heck- chpar ent .

@hnod <object> [+]-]<any substring of "rwf">

@hnod <obj ect >. <property> [+|-]<any substring of "rwc">
@hnod <obj ect >; <verb> [+| -] <any substring of "rwxd">

@hnod# <obj ect>: <verb nunber> [+]| -] <any substring of "rwxd">

Spr Ogets or changes permission flags. Objects — and also objects individua
properties and verbs — have permission flags that control whether non-owners can or
cannot: read (objects, verbs, and properties), write (objects, verbs, and properties),
execute (verbs), manually setting the value of properties, and make children (objects)
(i.e. is the object fertile?). The “c” flag determines whether the owner of an object
may change the value of a property that is defined on a parent or ancestor. (Thereisa
longer explanation of the “c” flag and its use beginning on page 165.) If used with
the “+” or “-” signs, it incrementally sets or clears the specified values. If used

Summary of Commands 263

mailto:@builder-o*ptions
mailto:@buildero*ptions

without the “+” or “-” signs, it sets the permission flags to the specified values
(clearing values as necessary). Seeaso hel p @hnod.

@hpar ent <object> to <new parent >
$bui | der

Changes the parent of <obj ect > to <new par ent >. The object now has all the
new parent’s properties and verbs, and all the new parent’s ancestors’ properties and

verbs.

@l *asses

$bui | der . : , o :
Prints a list of object classes that the wizards have identified as “useful”. (This

information is stored in #0.class_registry as a list of sublists. Each sublist

consists of: {<cat egory>, <one-line description> {<objects>}}. The list

is maintained manually.)

@ ear p*roperty <object>. <property>
@| prop*erty <object>. <property>

$pro
P 8I ears the value of the specified property on an object. This means the property

will henceforth inherit its value from the object’ s parent and will change as the value
of the propety on the parent changes. The property will remain clear until it is set or
changed on the child object itself.

@lear-tell-filter*-hook
LM player class #33337

Removes any tell-filter that isinuse. (See @et-tell-filter.)

@omrent [<t ext >]
$mai | _recipient_class

Sends MOOmail containing <t ext > to the owner of the room you're in as a
comment. If you do not specify text in the command line, then you are moved to
the mail room to compose your message (presumably at greater length).

@onpl et e <begi nni ng of a word>
$frand_cl ass
Lists all the words in the dictionary (if present) that begin with the text you

supply. E.g. @onpl ete sil h will give “silhouette”. (This may have been disabled
in MOQOs that don't support $spel | .)

connect guest | <specific guest name>
connect <pl ayer name> [<password>]
$l ogin

gConnec’[s you to the MOO. Guest connections do not require a password.
Omitting the password for a player connection will provide a separate prompt for
your password, so that it will not be displayed on your screen.

@ontents [<object>]
$bui | der

_ Gives adefinitive list of <obj ect >’s contents. If <obj ect > is not specified, then
lists the contents of the room you’re currently in.

264 Summary of Commands

mailto:@chmod

@opy <object>:<verb> to <target object>[:<new verb>]
@opy-x <object>:<verb> to <target object>[:<new verb>]
@opy-nove <object>:<verb> to <target object>[:<new verb>]

Spr 080pi$ averb from one object to another, or to a new verb on the same object.
It’ s better to have an object inherit a verb from a parent object than to copy verbs to
objects directly, but occasions arise when copying a verb is the only way to get
something done. @opy- x copies the verb without its “x” (executable) flag set, and
would be used to archive a verb before making modifications to the working verb.
@opy-nove deletesthe origina verb after the copy is complete.

@ount [<pl ayer>]
$bui | der

Tells you how many objects <pl ayer > owns and the total number of bytes used
by those objects. <pl ayer > defaults to yourself.

@ount DB [<pl ayer >]
$bui | der

This verb is related to @ount , differing only in the counting method. @ount
inspects a player’s . owned_obj ect s property. A very few system characters (notably
Hacker) do not participate in the object ownership system. To count these players
objects, it is necessary to consider every object in the database and see if <pl ayer > is
its. owner . Inlarge databases, this takes a long time and hogs system resources. Use
@ount instead, whenever possible.

@reat e <parent object> naned <nane>[, <alias>, .., <alias>]

$bui | der
Creates an object with the specified parent, name, and aliases. The object’s

parent can be changed at a later time with the @hpar ent command. The name
and/or aliases can be changed with the @ ename command. Aliases can be added or
removed with the @ddal i as and @ nal i as commands respectively. For rooms and
exits, it’s better to use @li g than @r eat e.

@spel |l <any nunber of words> | <object>. <property> |
<obj ect >: <ver b>
$frand_cl ass
For those MOOs that utilize $spel | , this command will check for misspelled
words. It tendsto run slowly.

@lb*si ze
$pr o'g _ . . .
eports the number of valid objects and allocated objects in the database.

decline <petition>
LM #55266 (Generic-Petition)
Removes <pet i t i on> from the list you see when you type @et i ti ons.

Summary of Commands 265

@lefi ne <vari abl e> as <val ue>
LM player class #8855)
This command will probably be of interest only to programmers. It lets you pre-

define avalue for use in a subsequent call toeval . Seealso @i st def s and @ndef.

@lenewt <pl ayer> [<conment >]
$wi z
Reverses the effect of @ewt or @ enp- newt .

@lescri be <object> as ["]<description>["]

$pl ayer

P gets the description of the specified object. If you omit the quotation marks,
then sentences will be separated by a single space only, regardless of how many
spaces you use to separate them when you type the description in. For multi-line
descriptions, edit the . descri pti on property with the note editor.

@letail me with <detail name>[,<alias>, .<alias>] as <detail
descri ption>
@etail ne with <detail name> is
LM player class #6669
Let’syou add a detail to your description. Use the null string to remove a detail.

Use the second form to display a detail. See help #6669: @etail for more
detailed examples.

@etails me | <nearby player> | <player object nunber>
LM player class #6669 o))
Shows what details the specified player has defined. Note, this does not match

on players names the way many verbs do (e.g. page). If the player you want to know
about isn’t in the same room, you will have to use eir object number.

@li g <new room nane>
@i g <exit>[,<aliases>][|<return-exit>[,<aliases>]] to <new room
nane> | <existing room object nunber>

$bui | der
Creates a new room, or exits to (and optionally back from) either a new room or
a specified existing room. Note, the vertical bar “| ” separating exits to and from a

room is actually part of the command, rather than the meta syntax. Example:
@lig north,n | south,s to The Msh Pit

@li sown <obj ect> [from <parent >]
Also: @i si nheri t

$pro

P 8ontrary to what the name might suggest, this command does not alter an
object’s ownership. Rather, it aters an object’s parentage, changing an object’s
parent to its grandparent. This command would be used if you did not own the
object, but owned its parent, and no longer wanted the object to be a child of that
parent. Changing the permission flag on the parent to —f (see @hnod) will prevent
people from using that object as a parent in the future.

266 Summary of Commands

@*i splay <object>[.][,][<property>]
@l*i splay <object>[:][;][<verb>]
@*isplay <object>[.|,][:]:]

Spr 0'Phis command displays <object> and/or <object>.<property> and/or
<object>:<verb> ownership, permissions, and values (for properties). The period and
colon indicate information about properties or verbs defined on the object itself; the
comma and semi-colon indicate information about inherited properties and verbs.
Seehel p @li spl ay for amore detailed explanation.

@i spl ay-o*ptions [<option> [<setting>]]
Also: @li spl ayo*pti ons
$pl ayer

Used without arguments, this command displays your current @li spl ay options
(settings that modify various aspects of the output from @li spl ay). Used with a
single option, displays the current setting of that option. Used with an option and
setting, modifies the specified option.

@unp <object> [with [id=#<new object nunber>] [noprops] [noverbs]
[create]]
$prog
_Prints out all of an object’s verbs and pro]perties If you specify wi th create, it
will print it out in a form that can be used for porting an object to another MOO

rather than merely investigating it on the source MOO. You can optionally omit
properties and/or verbs, and can ask it to use a different object number in its output
(this, too, can be useful for porting an object to another MOO).

@dit <object>[.<property>]
@dit <object>:<verb> [<dobj> <prep> <iohj>]

$pl ayer
Invokes the note editor or verb editor as appropriate. If no property is specified,

then it defaultsto . t ext if <obj ect > isadescendent of $not e or . descri pti on for
any other kind of object.

@dit-o*ptions [<option> [<setting>]]
Also: @dit-o*ptions
$pl ayer

‘Used without arguments, this command displ%/s your current @dit options
(settings that control various aspects of the in-MOO editors). Used with a single
option, displays the current setting of that option. Used with an option setting,
modifies the specified option.
@grep <regul ar expression> in <object> | <list of objects>

$pr0g . . : . . .
ches the specified object or list of objects for verbs containing a substring

matching <regul ar expression>. A regular expression is a template for
expressing generalized strings. Seehel p regul ar - expressi ons. Seeaso@r ep.

Summary of Commands 267

mailto:@display

@j ect <player or other object> [from <l ocation>]
@j ect! <player or other object> [from <l ocation>]
@ject!! <player or other object> [from <l ocation>]
$pl ayer

The usual way to move something is with the @ove command, and it's
considered polite to try to @move athing before gjecting it. If the object won’t move
and you own the object’s location (this includes yourself), then you should use
@j ect . With no exclamation points, this moves an object to its. honme if indicated
and possible. With one exclamation point, moves the offending object to the
location $not hi ng, but notifies the object that it's being moved. With two
exclamation points, moves the object to $not hi ng but doesn’t notify the object.

eprint <expression>
epri nt <n> <expressi on>

LM player class #5803 o))]
This command is useful for printing out complicated MOOcode expressions with

indentation intended to make them easier to read and understand. For example if
you had a complicated conditional clause and wanted to sort out what was actually
being checked:

eprint (caller == this &% args[2] ||
this.tally_board.registry:prinmary_char(dude) in
this.tally board. public_access || (caller I=this &&
$l ocal . second_char_registry:trust(caller_perns())))

would yield:
((caller == this) && args[2])
[((this.tally board.registry: primry_char(dude)
in this.tally_board. public_access)
[((caller !'=this)
&&
$l ocal . second_char _registry:trust(caller_pernms())))

The output can optionally be restricted to <n> columns. There is no space
between epri nt and <n>, e.q,

eprintl10 ((ticks_ left() < 3000) && suspend(0)).

eval <MOO code>
eval -d <MOO- code>
; <MOO- code>
$pr °g . o :

valuates a line of text as if it were MOO-code. Eval-d prints errors as values
rather than generating atraceback. Seehel p eval .

exanti ne <object>

$pl ayer
lgrovi des more information about an object than you can get just by looking at
it, including its full name, aliases, object number, owner, description, and any

268 Summary of Commands

obvious verbs that you can use on it. Unlike @xani ne, its output can be modified
by the object’ s owner.

@xanri ne <object>
$pl ayer

Provides the same information that exam ne does, except that its output can’t
be controlled by the object’s owner. This has advantages and disadvantages. The
advantage is that you may see more information. The disadvantage is that the
information might not be printed as nicely or might not be relevant to you (e.g.
“obvious verbs’ that are really only intended to be used by the object’ s owner).

@eatures [<nanme>] [for <player>]
$pl ayer

Lists all of a player’s features matching <name>, or, if <nane> is not supplied, all
featuresfor that player. Listsyour own features if no player is specified.

@ind <object nunber> | <player nanme or alias> | .<property nanme>
| :<verb nanme> | ?<help topic>
$frand_cl ass
Prints the location of the specified thing. This is especially useful for verbs and
properties because it prints out all instances that it finds in your vicinity (including

your known objects, see @ enenber).

@1 ush-cache
LM player class #322

When you use a feature object, the server must look through all your feature
objects to find the appropriate verb. This takestime. In order to help reduce lag, the
system records your most recently used feature object verbs and checks those first.
The place where your most-recent-usage information is stored is called acache. This
command clears out the cache of your recently-used feature object verbs.

foll ow <pl ayer>
LM player class #8855 (Thiscommand is also provided on some other MOOs, but
not isincluded with LambdaCore.)
Causes you to follow <player>. See aso unfol | ow, stop-follow ng, @i st -
foll owers andl ose.

@ or get <obj ect >
LM player class #26026
Removes an object from the list of those you keep track of using @ enenber .

@ or ked [<pl ayer >]

$pro

P I%ispl aysalist of all your suspended and forked tasks with their respective task_id
numbers. Only a wizard may specify a player other than emself. If awizard invokes
this command without specifying a particular player, then this command will display
all forked tasks in the system. This command is particularly useful for identifying
tasks that you may want to @i | | .

Summary of Commands 269

@ or ked- v*erbose [<pl ayer>]
$pr og

This command displays the same information as @ or ked, except that for tasks
that are suspended rather than forked off, showsthe full cal | er s() stack.

@orward <nsg> [on *<recipient>] to <recipient>[, <other
reci pi ent s>]
$mai | _reci pient_cl ass
Forwards a MOOmail message to the designated recipient(s). See help
@ or war d for adiscussion of the nuances of this command.

@ag*! <pl ayer or object>
$pl ayer : . o

his command prevents you from seeing any text emanating from the specified
player or object. (Note, this does not include posts to mailing lists or MOOmail. See
@ efuse.) If an object has children, then you must use the exclamation point; this
will have the effect of @aggi ng the object and all its descendents. It is not possible
to @ag aparent object only.

@aglist [all]
$pl a_¥er _ _) _)

he first form, with no arguments, displays a list of players and objects that you
are gagging. The second form looks for and displays players who are gagging you.

The second form is slow to run and adds to lag, so it should be used sparingly.

@ag-site <guest> for <duration>
LM player class #322

Prevents you from seeing any text from any guest connecting from the same site
as the designated guest, for the specified duration of time.

@ag-sites
LM player class #322

Displays a list of al guests whose sites you have gagged, along with when you
gagged the site and how much time is remaining before the site-gag expires.

@ender [m| f | n | <other>]

$pl ayer
P gets your gender (and pronouns) to male, female, neuter, etc.. Without an
argument, displays your current gender setting and other available genders to

@ethelp [<topic> [from <db or dblist>]]

$pro
P I?ocates and prints out the raw text of a help topic in a form that can be cut,

modified, and pasted back in (like @unp). With no argument, gets the blank (")
help topic.

@ns [all]
LM player class #322
Prints an @who listing of connected (or all) LambdaM OO RPG game masters.

270 Summary of Commands

@o <location>
$frand_cl ass . _ _))

Teleports you to the specified location, which can either be the object number of
aroom or the name of aroom inyour . r oons database.

go <direction>
$room

Moves you in the specified direction (e.g. north). You may specify more than
one direction, in which case you will go in those directions in sequence. Go north
east north would move you first north, then east, then north again.

@rep <string> in <object> | {object list}
$pr og

Searches the specified object or list of objects for verbs containing <stri ng>.
See also @qgr ep.

@ripe [<text>]
$mai | _recipient_class

Moves you to the mail editor, ready to send a mail with subject heading <t ext >
to the mail recipient(s) specified by thewizardsin $gri pe_reci pi ents.

heart beat
Syntax: ;me: heart beat (<n>)
LM player class #5803

Starts up a task that prints a time stamp to your screen every <n> minutes. For
those who idle for long periods of time, this can help identify when someone paged
you. Note, this command can only be used by programmers (because it has to be

started up using eval).

hel p [<t opi c>]
$pl ayer : o

isplays online help text for the specified topic. If no topic is specified, then it
displays alist of some of the topics for which help text is available.

honme

$pl ayer
P I&Iov&s you to your home, or to the default player starting place if your home is

invalid or won’t accept you for some reason.

@ dea [<text>]
$mai | _reci pi ent_cl ass
Sends MOOmMmail containing <t ext > to the owner of the room you're in as an

idea suggestion. If you do not specify <t ext > in the command line, then you are
moved to the mail room to compose your message (presumably at greater length).

i nv*entory

$pl ayer : : : . N
intsalist of things you are holding, with their object numbers.

Summary of Commands 271

@ oin <pl ayer>
$frand_cl ass

Teleports you to the specified player’s location. You can specify <pl ayer > by
object number, name, or any alias.

@eep-ntrail [<message sequence>]
Also: @eepnrai l

$mai | _recipient class)
Prevents the designated mail message(s) from expiring (i.e. being automatically

deleted after a certain amount of time). Seehel p @eepnmi | .

@i ds <obj ect >

$bui | der
Prints out a list (with object numbers) of all an object’s children. (Note, not all

descendents, just children.)

@ill <task id> | <object>:<verb> | soon <nunber of seconds> | all
%trailing id>

Also: @il I g*ui et
$prog

Kills one or more background tasks (see @ orked). The second form,
@i | | qui et , is better for killing large numbers of tasks, asit prints a summary of the
number of tasks killed rather than a line for each one (especially useful if you've
accidentally created a chain of forked tasks, each of which is sending text to your
screen). Task id numberstend to belarge. You canusethe%<trailing i d>formto
abbreviate the number to its last few digits: Instead of typing @il |l 2053554299,
you can type @i | | %299, and the system will kill all tasksin your queue that end in
the numbers 299.

@nown*_obj ects
Also: @nown* - obj ects
LM player class #26026

Prints alist of objects you’' ve made note of with @ enenber .

@ ast-c*onnection [all]

$pl ayer
P I%eports your most recent connection information (when and from where) or, if

al | isspecified, your last ten connection times and sites.

@astlog [<player>[,...,<player>]]
$pl ayer
LM player class #5803
Shows the last disconnect time of the specified player or players. If called with
no arguments, shows the last connection times of all players.

@i nel en*gt h [<number >]

$pl ayer
‘IYhis command is used in conjunction with @wrap, to cause the M OO to perform

word-wrapping for you. Without arguments, informs you of your current setting,

272 Summary of Commands

mailto:@keepmail
mailto:@known*-objects
mailto:@wrap

along with whether word-wrapping is currently turned on or off. With a number as
an argument, sets your line length to that number of characters.

@i st*# <object>:[<verb name> [<dobj> <prep> <iobj] | <verb
nunber>] [with | without parentheses | nunbers] [all]
[<start>..<end>]

$pro
P I?ists the MOO code associated with the specified verb. Normally, this command

lists only the code found either on the specified object itself or on its nearest
ancestor. The optional argument al | causes the corresponding code on the object
and all ancestors to be displayed. By default, lines are numbered and show only
those parentheses necessary to the meaning of the code. Y ou can specify a range of
line numbersto list if you know you only want to see part of the verb. These defaults
can be changed with the @r ogr ammer - opt i ons command.

@istdefs
LM player class #8855
Lists variables you have defined using the @ef i ne command.

@ist-followers
LM player class #8855
Prints a list of people who are programmatically following you. (See also

foll ow)

@istgag [all]
$pl
P % @uaglist.

@ ocati on*s <obj ect >
$bui | der) _ - _
Prints out the names and numbers of all objects that contain the specified object.

@ ock <object> with <key expression>
$bui | der

This command is used to specify (via <key expressi on>) locations to which
an object may be moved (and by extension, locations to which an object may not be

moved). Seehel p keys.

| ose <player> | all
LM player class #8855

This command causes <player> (or everyone) to stop following you
programmatically. Seef ol | ow.

@rai | <nessage- sequence> [on <recipi ent>]
$mai | _reci pi ent _cl ass

Displays headers of the specified mail messages. (See the section on reading mail
that begins on page 51 for a detailed explanation.)

Summary of Commands 273

mailto:@gaglist

@mil-all-new-mail
$mai | _recipi ent_cl ass

Displays the headers of all unread mail messages on yourself and lists to which
you are subscribed.

@rai | -o*ptions [<option> | <option setting>]
Also: @i | *pti ons
$pl ayer

Used without arguments, this command displays your current @i | options
(settings to customize various aspects of the mail system). Used with a single option,
displays the current setting of that option. Used with an option setting, modifies the
specified option.

@rake-petition <name>[,<alias>, ..., <alias>]
LM player class #322
Creates a LambdaM OO petition with the specified name and aliases.

@reasur e <obj ect >

@reasure sumary [<pl ayer>]

@reasure new [<pl ayer >]

@reasur e breakdown <object>

@reasure recent [<nunber of days>] [<player>]

$bui | der
For MOOs that use byte-based quota, objects are measured approximately once a

week by a background measurement task. The various forms of the @reasure
command provide away to update the measurement records on an incremental basis,
when needed. @reasur e <obj ect > measures the size of an object on demand. This
is appropriate if an object’s size is known to have undergone a recent significant
change. @reasure summary updates the summary information displayed by the
@uot a command. @reasure new measures all of a player’s objects that have never
been measured. (This might be needed if one were creating a large number of small
objects in a short time span, as one is only permitted to have a fixed number of
unmeasured objects at a time.) Use @easure breakdown if you need to find
out what part(s) of an object are taking up large amounts of space. @reasure

recent measures those things which have not been measured automatically with
the specified number of days.

@ress*ages <obj ect>

$pl ayer e . .
Lists all the messages on the specified object, and their values.

@rode [brief | verbose]
$pl ayer
Sets your viewing mode. If bri ef , then only the name of aroom will display on

your screen when you enter that room. If verbose, then a room's name and
description will display when you enter it. The default isver bose.

274 Summary of Commands

@ore [rest | flush]
$pl ayer
ou have @agel engt h set and the system has produced more lines of output
than WI | fit on your screen, you will see a message of the form
*** NMore *** <n> lines left. Do @more [rest | flush] for
nore.

@ror e without arguments prints sufficiently many lines to fill your screen, or all
that remain, if they will fit. @more rest will print al of the remaining lines,

regardless of whether they will fit or not. @rore fl ush discards all remaining lines
instead of displaying them on your screen.

@move <object> to <l ocation>
$frand_cl ass o _ o)
Teleports the specified object to the specified location.

mu*rmur <person> <text>
LM player class #33337

This command does the same thing as whi sper, except that the syntax is such
that you don’t need to enclose the whispered text in quotation marks.

news [all | new | contents | archive]

$pl a

P Fv?ead the contents of the newspaper, which is a subset of messages on the *news
mailing list that the wizards have designated as being of current interest or relevance
to the entire MOO. news new will display news items that you have not yet read.
news all will display al news items. news contents will display headers of all
newsitems. news ar chi ve will display all messages on the* news mailing list.

@etforw ard [<nessage- sequence> [on <nmail -recipient>]]
$mai | _recipient_class
Forwards the designated message(s) to your registration email address. Defaults

to the current message on your current folder.

@ewress*age <nmessage- nanme> [<message-text>] [on <object >]

$bui | der
In general, only programmers can add new properties to objects. This command

lets non-programmer builders add message properties to objects they own.

@ew <player> [<reason>]
$wi z

A wizard-only command. Inhibits the specified player’s ability to connect to the
system. A MOOmail message is automatically sent to *site-1ocks. See also
@lenewt , @ enp- newt .

@ext [<how many>] [on <mail _recipient>]
$mai | _reci pi ent_cl ass

Prints out the | next <how many> mail messages on Your current folder or the
designated mail recipient (yourself or amailing Ilst) Defaults to one message.

Summary of Commands 275

mailto:@more

@omn nate <pl ayer> for <office>
LM player class #322

Nominates a person for public office on LambdaMOO. This can only be done
during a two-week nominating period before any election. The offices are: ARB,
Reaper, and Regi strar.

@wotedit <note-object> | <object>. <property>
$pl ayer : o o

oves you to the note editor, working either on the text of the specified note or
on the text in the designated property on the designated object.

@prop*erty <object>. <prop-nanme> [<initial-value> [<perns>
[<owner >]]]
LM player class #5803
Thisisjust like @r op*erty, exceptthat <i ni ti al -val ue> isevauated, first.

@wner <obj ect >

$pl ayer
‘IYhis command shows you who the owner of an object is. (It was added to
LambdaM OO in July, 2000, and may or may not be available on other MOOs.)

page <pl ayer> <text>
$pl ayer, LM player class #5803

Sends <t ext > to <pl ayer > as if you were paging em from a distance. The
fancier version on LM player class #5803 lets you page more than one player
simultaneously; you must enclose the players names in quotation marks. page
"<pl ayer 1> <pl ayer 2> <pl ayer 3>" <text>.

@agel en*gt h [<nunber >]
$pl ayer

This command is used in conjunction with @ror e to control the display of lines
on your screen. When a number is specified, it sets your page length to a number of
rows (of text). The system will prompt you with a message to type “@wor e” if thereis
more text about to display than will fit at one time. Without an argument, it will
show you your current setting. To turn off page buffering and see all the lines of text
at once, set your page length to zero. This would be an appropriate choice if you
were switching from telnet to a client that lets you scroll back, for example.

@aranoid [off | imediate | <nunber>]
$pl a_¥e_r) _) _)
his command is used to record and investigate lines of text that print to your

screen. If invoked withi nredi at e as the argument, it will prepend each line you see
with the name of the player it thinks is responsible for generating that line. If

invoked with <nunber >, then that number of linesis stored for later inspection with
@heck or @heck-full. On LambdaMOO, players must first type @ nl ag to
disable the lag-reduction FO for @ar anoi d to work.

@ar ent <obj ect >

LM player class #8855
Tells you the name and object number of an object’ simmediate parent.

276 Summary of Commands

@ar ents <obj ect >

$bui | der
Displays the names and object numbers of an object’ s parent and ancestors.

party
LM player class #5803

This command prints alist of rooms and occupants in order of decreasing crowd
size and increasing idle time (i.e. the liveliest parties first). For each, it comments on
the security arrangements and asks if you want to go there. Y ou may discontinue the

listing at any time by typing @bort .

@assword <ol d- passwor d> <new passwor d>

$pl ayer
P éhangeﬁyour password.

@ast e
Pasting Feature Object, LM player class #8855

Prompts for lines of text (terminated by a period on a line by itself) then displays
the text to the entire room.

@asteto <pl ayer>

Pasti ng Feature Object . . e
Prompts for lines of text, then displays them (privately) to the specified player.

@c- news
LM player class#33337

The author of the Politically Correct Featureful Player d ass
Creat ed Because Nobody Wuld @opy Verbs to 8855 provided himself with
away to broadcast news items to users of his player class in a manner similar to the
MOO-wide news command. Thiscommand is used to read those news items.

@»c- options
LM player class #33337))

This player class provides an options package that works the same way that
@rai | -options does. Type @c-options to list these options, and hel p @c-
opt i ons for additional information on setting them.

@edit <object>. <property>
LM player class #5803

This command moves you to the property editor, described as “highly
experimental” by its author. If you are editing a property whose value is a string or
list of strings, you are probably better off using the note editor, instead, but this
facility might be useful for editing properties with a more complex structure. See

hel p @edit for more detailed information.

@petition-options
LM player class #322

Lists options that pertain to various aspects of the LambdaM OO petition and
ballot system. Use @etition-opti on +noannounce to suppress announcements
of open ballots every timeyou log in.

Summary of Commands 277

mailto:@copy
mailto:@pc-
mailto:@pedit

@etitions [all | public | signed | vetted]
LM player class #322 . .) o .
Lists al or some petitions, as specified. The default is to list signed petitions.

You can use @etition-options to customize the order in which petitions are
presented.

@rettylist <object>:<verb>
LM player class #5803 . . i) i
Prints a verb with line breaks and indentations intended to make it easier to

read.

@rev*ious [<how many>] [on <mmil _recipient>]
$mai | _recipient_class

Prints out the previous <how many> mail messages on your current folder or the
designated mail recipient (yourself or amailing list). Defaults to one message.

@r og*ram <obj ect >: <ver b> [<dobj > <preposition> <iobj>]
@pr ogr am# <obj ect >: <ver b- nunber >

$pro
P 'Ph&ee commands put you into a line-reading mode. The lines you type in are

saved as the content of the designated verb on the designated object, if that verb
exists (otherwise the lines of text are still read, but are ignored).

@r ogo*ptions
Also: @r og-o*ptions @rogranmer o*ptions @rogramer-o*ptions
$pro

P Eias a set of options available to programmers to customize certain system
behaviors related to programming, e.g. whether line numbers print out when you list
a verb. The @rogranmer-options package works like the @rai |l -options
package.

@rop*erty <object>. <property-nanme> [<initial value> [<perni ssion-
flags> [<owner>]]]
$pr og
Adds a property to an object. The initial value defaults to 0. The permission

flags default to “r ¢", but this can be changed as one of the @r ogr anmer - opt i ons.
A wizard may specify an owner other than emself.

@r os*pectus <pl ayer >
$prog

This command is like @udi t, but provides additional information about each
object, such as whether it has kids, how many verbs are defined on it, etc. See hel p
@r ospect us for more detailed information.

@ui ckr*eply <msg> [on <recipient>] [sender | all | followp]
Also: @r epl y
$mai | _recipient_class
This command lets you reply to a mail message without actually going to the
mail editor. It promptsyou for lines of input and then sends them directly.

278 Summary of Commands

mailto:@programmero*ptions
mailto:@programmer-o*ptions

@ui ck*send <mail -recipient> [subj = "text"] [<one-line-nmessage>]
Also: @send
$mai | _recipi ent_cl ass]))))

Sénds a message to a player or a list without moving you to the mail editor. If
you do not specify a one-line message, it prompts you for lines of input, then sends
them directly.

@ui t
$pl ae/)er L .

isconnects you from the MOO. Your player object is automatically moved to
its home a short time later.

@uot a [<pl ayer >]
$bui | der .
Prints out your current quota and measured usage, or the quota of a specified

player.

@ anm

$mai | _reci pi ent _cl ass
See @read-all-new* -mail.

@ ead [<message-sequence> [on <mail -reci pient>]]

$nmai | _recipient_class . . .
Reads the speCified messages on the specified mail recipient (yourself or a MOO

mailing list). If no message sequence or recipient is specified, reads your current
message on your current folder. Updates your current message pointer.

@ ead- al | - new*- nai |
$mai | _reci pi ent_cl ass

Reads all new messages on all mailing lists to which you are subscribed. Prompts
you at the end to verify that you got all the information, and if you answer yes,
updates your current message pointer. If the system crashes or you somehow
disconnect before being able to answer the prompt, then your current message
pointer is not updated, and these messages will still appear as new messages next time

you log on. This command can be abbreviated as @ anm

@ eaper-ballots
LM player class #322]
Lists ballots for the office of LambdaM OO Reaper.

@ eaper-petitions
LM player class #322 . o))
Prints a list of all petitions nominating candidates to the office of LambdaM OO

Reaper, except those you may have declined. Using the argument al | shows all
reaper nominating petitions.

@eapers [all]
LM player class #322
Prints a list of connected (or all) LambdaM OO Reapers. Reapers recycle players

who have not logged on for a certain amount of time, and oversee the distribution of
their owned objects if deemed appropriate. See hel p reapi ng.

Summary of Commands 279

mailto:@read-all-new*-mail

@ ecreate <object> as <parent> naned <new nane>
$bui | der

Takes an existing object and totally recreates it as a new kid of <parent> as if
with @reate. Verbs and properties on the object are stripped off, and inherited
properties are reset to be clear.

@ ecycl e <obj ect>
$bui | der

Destroy an object irretrievably. If you have your @ui |l der-opti ons set to
—bi _creat e (the preferred setting), the object will be turned into a kid of $gar bage
for re-use the next time someone invokes @reate. Players may not be recycled
unless they have first been made non-players with the @oad command or an
equivalent.

@efusal -r*eporting [on | off]
$frand_cl ass

If set to on, notifies you when someone whom you are refusing attempts a
refused action while you are connected (“so that you can thumb your nose,” says the
documentation). If invoked without an argument, displays whether refusal reporting
is currently on or off. Refusal reporting works for page, whi sper, and nmai | , but
doesn’t work for nove, j oi n, or accept .

@efusals [for <player>]
$frand_cl ass

Lists players and actions that you are refusing or that the specified player is
refusing.

@ef *use <action(s)> [from <player>] [for <duration>]

$frand_cl ass
Theé MOO provides a way to refuse certain actions, either universally or from a

specified player. The actions that can be refused are page, whi sper, nmai |, nove,
j oin (only works in certain rooms that support it), accept, fl anes, politics
(LambdaM OO only), and al | of the above. Seeadsohel p @ ef use.

@egi sterme [as <enail -address>]

$pl a
5|splays your current MOO registration email address, or changes it to a new
one. If you are changing it, a new password is generated and mailed to the new

address. You can change the new password back again with the @assword
command.

@egistrar-ballots

LM player class #322
Lists ballots for the office of LambdaM OO Registrar.

@egistrar-petitions [all]

LM player class #322
Prints a list of all petitions nominating candidates to the office of LambdaM OO

Registrar, except those you may have declined. Using the argument al | shows all
registrar nominating petitions.

280 Summary of Commands

mailto:@refuse

@egistrars [all]
LM player class #322
Prints a list of connected (or all) LambdaMOO Registrars. Registrars assist the

wizards in creating new players. They have accessto players email addresses.

@ enmenber <obj ect >
LM player class #26026
Remember an object’s number. You can see a list of these objects by typing

@nown. Seealso @ or get .

@ enove-feature
See @ nf eat ur e.

@ enane <object> to "<new nane>"[,"<alias>",...,"<alias>"]
$pl ayer

Rename an object, with or without additional aliases. See hel p @ enane for
some detailed examples.

@ enunber [me | <rTai I -reci pi ent >]

$mai |l _recipient_cla
Renumbers, from 1 to the total number of messages, all MOOmail messages on

yourself or on a mailing list you own. Renumbering a public mailing list is
inadvisable because it disrupts other players’ current message pointers to that list. No
messages are actually lost, but @ n will show that there are new messages on the list
while @n will say that there are no new messages. See aso hel p zonbie-
nessages.

@epl *y [<nessage- nunber>] [on <mmil-recipient] [sender | all |
fol | owup] [i ncl ude | noi ncl ude]

$mail _recipient cla
Takes you to the ma|I editor and sets up areply to the specified message. Specify

sender to reply to the sender only, all to send your reply to all recipients who
received the original post, or f ol | omup to send your reply to the first non-player
recipient (i.e. alist). Specifyi ncl ude or noi ncl ude to include or omit (respectively)
the text of the original message. |If these options are omitted, the defaults are sender
and noi ncl ude, but these can be changed with @mi | - opti ons.

@ equest <character-name> for <enmil -address>

$guest
Thisis the command used to request a player-character on a MOOQO.

@ esend <message-sequence> [on <nmil-recipient>] [to
<reci pi ent (s)>]
$mai | _recipient_cl ass
This is like @ orwar d, except that it keeps the original body of the forwarded
message intact and modifies the header to indicate that you resent it.

Summary of Commands 281

mailto:@rename

@ esi dent <pl ayer - or - obj ect >
@ esi dent !<pl ayer-or-object>
@esidents

o OOTmhe first form adds a player or object to aroom’s list of allowable residents. If a
player, that player may then set eir home to that room. The second form removes a
player or object from a room’s list of residents. The third form displays a room’'s
current list of residents.

@nualias <alias> from <object>
@nal i as <alias> from <obj ect >: <ver b- nanme>
@nmal i as# <alias> from <obj ect >: <ver b- nunber >
$pl ayer

Removes an adias from the specified object or verb. @nualias# is for
unambiguously identifying a verb when an object may have more than one verb with
the same name.

@ nmdi ct <wor d>
$frand_cl ass

Remove a word from $spel |, if present. (Many MOOs have recycled $spel |
because it is cumbersomely large). Only wizards and players in $spel | . trusted
may use this verb.

@ nfeature <feature-object>
$pl ayer
Remove a feature from your . f eat ur es list. Feature objects are used to extend

the set of commands available to aplayer. See also @dd- f eat ur e.

@nl ag
LM feature object #26787
Turns on the lag reduction FO and any features similar to it. Disables @ag,

@heck-full, and any other commands that utilize a player's:tell verb to filter
and/or otherwise pre-process text before it is displayed to your screen.

@mtail [<message-sequence>] [from <recipient>]
$mai | _recipient_class _ o _
Removes one or more MOOmail messages from yourself or a specified mail

recipient (mailing list). Seeaso @inr nmai | .

@ nprop*erty <obj ect>. <property-nanme>

$prolg - _
emoves the named property from the specified object.

@ nr *oom <nane>

$frand_cl ass _
Remove the named room from the list of rooms you remember by name. See

also @addr oomand @ oons.

282 Summary of Commands

@nverb <object>: <verb-nanme> [<dobj > <prep> <i obj >]
@ nver b# <obj ect >: <ver b- nunber >

$pro

P Igemove the specified verb from the specified object. If there are two or more
verbs with the same name, removes the most recently defined one. If the argument
specifiers are provided, then it removes the most recently defined one matching both
verb name and argument ecifiers. The second form, @ nver b#, is used to
unambiguously remove a verb as specified in the (1-based) list given by the built-in
function ver bs(<obj ect >) .

@ mwor d <wor d>
$frand_cl ass

Remove a word from your personal dictionary (stored in a player's . dict
property).

@n

$mai | _recipi ent_cl ass . i) ;
Lists a summary of new messages on mailing lists to which you are subscribed,

similar to that displayed when you log in.

@ oons
$frand_cl ass
Displays alist of rooms you have remembered using the @ddr oomcommand.

seek <pl ayer>
LM player class #7069
Tries to move you to the designated player’s location using an exit, thus

simulating walking (as opposed to teleporting). (Seealso hel p #27325: @eek) .

@end [<recipient> [<recipient(s)>] [subj[ect]="<subject>"]
$mai | recipient_class _
Moves you to the mail editor and prepares you to compose a MOOmail message

to the designated recipient(s). If no recipient is specified, resumes an earlier mail
editor session, if there was one.

@et env <environment string>

$pro
gets a string that is evaluated before the eval command evaluates anything else.
Example: @et env ne=pl ayer; here=pl ayer. | ocati on

@et horre
$pl a_¥e_r . .

ries to set your home to your current location. Some rooms permit players to
set their homes there, while others do not. This is at the discretion of the room’s
owner. If you are a room owner and want to make it so that anyone may set eir
home there, @et <roone.free_honme to 1. To permit an individual player to set

eir home to aroom you own, use the @ esi dent command.

Summary of Commands 283

@et *prop <object>. <property nane> to <val ue>

$bui | der
Changes the value of an existing property on an object to the specified new

value.

@et-tell-filter*-hook <tell-filter-object>
LM player class #33337

A tell-filter is an object that intercepts text which is about to be displayed to your
screen and may (or may not) modify that text in some way before it is actually
displayed to you. One possible example would be to put a special symbol before text
that was generated with the emote verb. A tell filter is usually custom programmed
by the player intending to use it — if you use a tell-filter owned by someone elsg, its
owner would theoretically be able to see most of the text that you see if e chose to.

(Secdso@l ear-tell-filter andhelp tell-filter.)

@*how <obj ect> | <object>. <property> | <object>:<verb>
$pr og

This command is very similar to @li spl ay, but the information it displays about
objects, properties and verbs is in a different format and more detailed. See also @s

and @i spl ay.

@kip <mail recipi ent >

$mai I recipient_clas
Skip to the end of amalllng list, as if you had read all the messages. (This resets

your current message pointer for that list.)

@ort-owned*-objects object | size
$bui | der

The @udi t command displays a list of objects you own in the order that you
created them. This command lets you change that so that your objects are sorted by
object number or by size. Once this is done, however, there is no way to go back to
having them sorted by when they were created.

@pel | <any nunber of words> | <object>. <property> |
<obj ect >: <ver b>

$frand_cl ass
Checks the spelling of a sequence of words, the words in an object’s property

(the property must be a string or list of strings), or the quoted parts of a verb. (This
command may be disabled on some MOOs.)

@pel | nressages <obj ect >

$frand_cl ass
Checks the messages (all properties whose name ends in _nsg) on the specified

object for correct spelling. Seealso hel p spel |i ng.

@pel | p* ropert i es <object>

$fr and cla
Check aII properties on the specified object for correct spelling. Properties that

are not astring or alist of stringswill beignored. Seealso hel p spel |l ing.

284 Summary of Commands

@purn [!]<object>
$frand_cl ass

Prevent an object or any of its descendents from entering your inventory. Used
with the exclamation point, this command removes an object from your list of
spurned objects.

@pur ned

$frand_cl ass
Displays alist of spurned objects.

@s*how <obj ect> | <object>. <property> | <object>:<verb>
LM player class #5803

A short version of @how.

stop-follow ng <player>
LM player class #8855
Cease programmatically following <pl ayer > wherever egoes. Seeadsof ol | ow.

@ubscribe [<mailing |ist>]
@ubscribe*-quick [<mailing |ist>]
$mai | _recipient_cl ass

Subscribes you to a mailing list. If you type @ubscri be without specifying a
mailing list, then the system will print out all the lists to which you are not
subscribed, along with their descriptions. @ubscri be- qui ck, without specifying a
mailing list, will print out only the names of the mailing lists to which you are not
subscribed, i.e. the lists' descriptions are omitted.

@ubscri bed
$mai | _recipient _class .]]]
Displays a list of all mailing lists to which you are subscribed, whether or not

they have new messages on them. Seealso @ n.

@uggest *ion [<text>]
$mai | _reci pi ent_cl ass

Sends MOOmail containing <t ext > to the owner of the room you're in as a
suggestion. If you do not specify text in the command line, then you are moved to
the mail room to compose your message (presumably at greater length).

@Gweep

$pl ayer
'¥his verb searches your local environment for objects that might be relaying

information. It omits objects and verbs owned by yourself or by a wizard.
Programmers wishing to customize what is displayed by their objects when someone

uses the @weep command should add a: sweep_nsg verb.

@ el eport
See @move.

Summary of Commands 285

@ell-filter
LM player class #33337

Displays information about the tell-filter object in use, if any. See @et-tell -
filter.

@oad <player> [graylist | blacklist | redlist] [<conment>]
@oad! <player> [graylist | blacklist | redlist] [<coment>]
@pad! I <player> [graylist | blacklist | redlist] [<comrent>]

Sw ZA wizard-only command. Deactivates a player object’s status as a player, but
does not recycle the object. The player’'s owned objects are left in the database as
orphans, so it's a good idea to @udi t em first and @ ecycl e the objects listed. If
used with one exclamation mark, the victim is aso @blacklisted. If used with two
exclamation marks, the victim is @redlisted. The optional comment isincluded in a

postto*site-1 ocks. Seealsohel p @oad and hel p @l ackl i st.

@utori al
LM player class #322

Starts atutorial of basic MOO commands. Type qui t at any time to discontinue
it.

@ypo [<text>]
$mai | _recipient_class

Sends MOOmail containing <t ext > to the owner of the room you're in, to
report a typographical error. If you do not specify text in the command line, then
you are moved to the mail room to compose your message (presumably at greater
length).

@inban <pl ayer or object> | everyone
LM player class #322

Cease banning someone or something from all rooms you own. See also @an,
@anned.

@ndef *i ne <l abel >
LM player class #8855
Remove a definition for eval. See @lef i ne.

unf ol I ow <pl ayer >
LM player class #8855

Stop following <pl ayer > wherever e goes. Seeasof ol | ow.

@ngag <pl ayer or object>
$pl ayer

Cease @aggi ng aplayer or object. You will once again see text originating from
emor it. See @ag.

286 Summary of Commands

mailto:@blacklisted
mailto:@redlisted
mailto:@toad
mailto:@blacklist

@ngag-site all | last | <guest> [<date>]
LM player class #322

Cease @aggi ng a site associated with a guest. See @ag-site, @ag-sites.
Specify the date if you used @ag- sit e for guests with the same name on different
occasions.

@inl ock <object>
$bui | der
Clear any lock you may have placed on the object. See @ ock, and hel p

| ocki ng.

@nmess*age <message- nane> [from <obj ect >]

$bui | der
Remove a message property from an object you own (defaults to yourself).

(Normally only programmers can add and remove properties. But anyone can add or
remove amessage.) See @ewnessage.

@inread <msg> [on <recipient>]
$mai | _recipi ent_cl ass

Reset your message pointer, as if you haven't yet read the specified message on
the specified mailing list.

@nrefuse <actions> from <player> | <actions> | everything
$frand_cl ass
Cease @ ef usi ng specified actions. See @ ef use.

@nrmmtail [list | expunge] [on <recipient>]
$mai | _reci pient_cl ass

When you remove a MOOmail message from yourself or a mailing list using
@ mm it isn’t really deleted from the database, but rather is saved in a sort of limbo as
a zombie message. The main purpose of the @nr nm command is to undo the
removal of a message, restoring it to yourself or a mailing list. You can also use this
command to view a mailing list’s associated zombie messages, or to expunge any
zombie messages so that they are well and truly gone forever.

There are a few idiosyncrasies of this verb that the formal syntax, while correct,
doesn’'t make very clear. First, notice that while we remove messagesf r omallist, we
unremove them on alist. Second, unremove is an all-or-nothing proposition — you
can't specify a message sequence. For a specified recipient, you list all zombie
messages, restore all zombie messages, or expunge all zombie messages. See alsohel p
@inrmuai | and hel p zonbi e- nessages.

@insend [<nessage- sequence>] from <pl ayer>

$mail recipient_ class)]
This command enables one, in some circumstances, to retract a post that one has

sent to a player. There are several exceptions. See hel p @nsend. It was added to
LambdaM OO in 1999, and therefore is not present in older versions of the core

database.

Summary of Commands 287

mailto:@unsend

@mnset-tell-filter*-hook
LM player class #33337
Removes any tell-filter that isinuse. (See @et-tell-filter.)

@insubscribe [<list or |ists>]

$mai | _reci pi ent _cl ass o o S
Unsubscribes you from the specified mailing lists, or your current mailing list if
no mailing list is specified.

@nsubscri bed
@insubscri bed- qui ck

$mai | _reci pi ent _cl ass o o _)
Prints out the names and descriptions of all mailing lists to which you are not

currently subscribed. The quick version prints out names only.

@ipti me
$pl a_ige_r _ i .

his command displays the amount of time since the last system restart.
@users

$pl ayer
P I)_/ists names of all connected players, in alphabetical order. See also @who.

@erb <object>:<verb nane(s)> [<dobj> <preposition> <iobj>
[<pernmission flags> [<verb owner>]]]

$pro

P ,gdds a new verb to an object. If more than one dlias is given to the verb, then
the names should be separated by spaces and all enclosed in double quotes, e.g.,
@erb nme:"fee fie fo fu*ni. Default argument specifiers can be specified with

rog-option. The verb owner defaults to yourself; only wizards can specify a
different verb owner. You must own an object or be a wizard in order to add a verb

toit.

@erbs <obj ect >
$pr og
Prints a concise list of the verbs defined on an object. See also @li spl ay.

@erify-owned
$bui | der _ _ o
Verifies that your owned objects are all, in fact, owned by you. (A situation

where this might not be the case could occur when an inexperienced wizard tried to
change an object’s ownership by manually setting its . owner property rather than
using the wizard-only @r ant command.)

@ersion

$pl ayer
grints out the version number of the currently-running MOO server, and the
date that the database was extracted from the core.

288 Summary of Commands

mailto:@who

@wat ch [<player> | none | off]
LM player class #33337

This verb notifies you when the watched player ceases to be idle, i.e.,, when e
types something. With no arguments, tells you whom you are watching. With none
or of f, turns watching off.

@ways [<roonp]
$frand_cl ass)) o
Lists aroom'’s obvious exits and their aliases.

ways
LM player class #5803
Listsall of the obvious exits from your current location.

@web me is [<web information>]

$frand_cl ass . . .
This verb lets you specify web information about yourself (e.g. your home page)

for others to view. If <web i nformation> is omitted from the command, it shows
you your current web information. Programmers may access others’ web information
either via a player's . web_i nf o property or :web_info verb. This verb and its
associated properties are not included with the LambdaCore (even though
$f rand_cl ass isincluded).

where*i s [<player> [<player(s)>]]
@where*is [<player> [<player(s)>]]

$pl ayer
P IYists the name(s), object number(s), location(s) and location object number(s) of

the specified player or players. If no argument is given, then listsall players.

wh*i sper "<text>" to player
$pl ayer, $frand_cl ass, LM player class #7069

Communicates <t ext > to the specified player. Other playersin the room do not
see the exchange. The version on $f rand_cl ass permits @ ef usal of whispers.
The version on LM player class #7069 stores the identity of the person who most
recently whispered something to you for use with its respond verb, =. See aso
nmur mur , @ ef use, =.

@ho [<player> [<player(s)>]]
$pl aésr

ows the names, numbers, idle durations and locations of the specified players,
or al players if none are specified. Many different versions of this verb have since

been written; some player classes provide ways to select which version of @wo you
prefer to use. See also @isers.

Summary of Commands 289

Il recycle <item designator>

Il bequeath <item designator> to <pl ayer>

Il refuse <item designator> to <pl ayer>
ill keep <item designator>

Il

[l

[l

i di spl ay
forget <item designator>
cl ear
LM player class #322
This command provides a variety of ways for one to specify how one wishes

one's objects to be disposed of in the event that one isreaped. Seehelp @vll on
LambdaM OO for more detailed information.

2092999

@ni t ness [on]
@M tness of f
@\ t ness show [<nunber >]
@\ t ness display [<number>]
@M t ness del ete <nunber >
@\ t ness emai |l <nunber >
@\ t ness publish <nunber>
LM player class #322
This command provides a way to log conversations. Witness logs cannot be

modified, even by the person who is doing thelogging. Seehel p @\ t ness.

@ni zards [all]
$pl ayer)
Lists connected (or all) wizards.

@rap [on | off]

sl a%etrhe words you see get cut off at the right edge of the screen, this means that
you are either using telnet, or, for some other reason, you don’'t have word-wrap.
@wap on causes the MOO to perform word-wrapping for you. This command is
used in conjunction with the @ i nel en command, which tells the MOO how long a
line may be before it is wrapped to the next line. @wap off discontinues this
behavior; you may need to do this if you switch from using telnet to using a client
program. Typing @wrap with no arguments will tell you whether word-wrapping is
currently on or off.

' <pl ayer> <text>
LM player class #8855, LM player class #33337

This command is a short cut for the page command. Though not part of the
core, it has been ported to various other MOOs. (The version on #33337 permits you
to omit <pl ayer > to respond to the person who paged you most recently.)

? [<topic>]

$pl a_¥e_r)
hisis ashort cut for the help command.

290 Summary of Commands

mailto:@will
mailto:@witness
mailto:@wrap

I <t ext>
LM player class #5803]]
This command lets you vary the forms of your statements if you get tired of

beginning everything with your name. If your name is included anywhere in
<t ext >, then <t ext> is displayed as you typed it in. Otherwise, your name is
appended to the end as an attribution. See hel p !. Here are a couple of examples
(with Yib doing the typing):

I'Two t hunbs up!

displays:
Two t hunbs up! --Yib

I'A coconut creampie sails into the roomand smashes into
Yib's facel

displays:
A coconut creampie sails into the roomand snashes into
Yib's facel

#<string>[.<property>|.parent] [e*xit | p*layer | i*nventory] [for
<code>]

$pro
P Igrints information about the object named by <string>. Thisis a very powerful

shortcut for some of the things that the eval command does. In particular, it
enables you to look at properties of an object without having to know its object

number in advance. Properties can be chained in sequence. Here are afew examples:

#rock. col or _li st
displaysthe .color_list property of rock.

#yib p
displays Yib’'s name and object number.

#yi b. description p
displays Yib's description — foils |ook-detection.

#yi b.l ocation p
displays Yib's location.

#yi b.l ocation. description
displays adescription of Yib’'slocation.

#yi b. | ocati on. owner
displays who is the owner of Yib’'slocation.

Seehel p #.

Summary of Commands 291

+<pl ayer > <text>
LM player class #5803

This is the remote-emote command. It lets you display <t ext > to <pl ayer > as
if it were an emote, but you do not have to be in the same room with em.

=[<t ext >]
LM player class #7069

Responds with <t ext > to the player who most recently paged you. Used with
no argument, displays the player to whom you are ready to respond.

292 Summary of Commands

Appendix B —Verbsin $Utils Packages

$building_utils

. make_exit

. set _names

;recreate

. par se_nanes
;audit_object _category

$byte quota_utils

sinitialize_quota

cinit_for_core

:adj ust _quot a_for_progranmer

:bi _create

:enabl e _create

. di sabl e_create

. parse_create_args

:"creation_pernmitted
verb_addition_pernmitted
property _addition_pernmtted

;all _characters

. di spl ay_quot a

:get_quota

: charge_quota

:rei mburse_quot a

:set_quota

. get _size _quota

. di spl ay_quota_sunmary

:quot a_r enai ni ng

$code _utils
;eval _d
:"toint tonunt
:toobj

(toerr

Jerror_nane
: show_obj ect
: show_property

293

:object _audit_string
:"do_audit do_prospectus"”
:do_audit _item
:size_string

sprelimnary_rei nburse_quota
:val ue_bytes

:"obj ect _bytes object_size"
:do_summary

:sunmari ze_one_user

:recent _object _bytes

: measur enent _t ask

: can_peek

:can_touch

. do_breakdown

: obj ect _overhead _bytes

. property_overhead_bytes
:verb_overhead bytes

: add_owned_obj ect
:measur enment _task_nof ork

> measur enent _t ask_body

: schedul e_neasurenent _t ask
:task_perns

i property_exists

: show ver bdef
s expl ai n_verb_synt ax
:"verb_p*erns

verb_perm *ssi ons"

:verb_l oc*ation
:verb_docunent ati on
:set _verb _docunentation

: parse_propref

. parse_ver bref

. par se_ar gspec

. prepositions

:short _prep

cfull _prep

1 get_prep

: _fix_preps
:find_verb_naned
:find_ | ast_verb_naned
:find_callable_verb_naned
:find_verbs_containing
: _find_verbs_containi ng
:find_verbs_mat ching

: _find_verbs_matchi ng
. _grep_verb_code

. _egrep_verb_code

. _parse_audit_args
“hel p_db_Ii st

:hel p_db_search
ccorify_object
;inside_quotes
:verb_or_property
:task valid

$command_utils

:object_match_failed

:"player_match_result
pl ayer _match_fail ed"

:read

:read_lines

jyes_or_no

:read_I| i nes_escape

: suspend

;running_out_of tine

$convert_utils

:"dd_to_dnms dh_to_hns"
:"dms_to_dd hns_to_dh"
:rect_to_polar
:polar_to_rect
:"F_to_C degF_to_degC

294 $Utils

:task_owner

cargstr

:ver bname_mat ch
:substitute
:show who _|isting

. _egrep_verb code_al
. _grep_verb_code_al
:verb_usage
:verb_frane
:verb_all _franes

. nmove_verb
:nove_prop*erty
ceval _d_uti
:display_callers
:callers_text

:"set _property_val ue

set _verb_or_property"

:owns_task

:dfl ag_on
ctype_str

s dunp_properties
:dunp_preanbl e
:dunp_verbs

:suspend_i f _needed
cdunp_lines

: expl ai n_synt ax
:do_huh

:task_info
tinit_for_core
ckill _if_laggy
:validate feature

:"C to_F degC to_degF"
:convert

. _do_convert

D _try_metric_prefix

: _format _units

:"K to_C degK to_degC "R to_F degR to_degF"
:"C to_K degC to_degK" . _do_val ue
:"F_to_R degF_to_degR'

$gender _utils

: set . _verb _plura

:add : _verb_singul ar

> get _pronoun :_do

1 get _conj *ugation > pronoun_sub

$list_utils

: make ;iassoc_prefix

: range ‘iassoc_sorted

S map_prop*erty :sort_alist

:map_verb :sort_alist_suspended

S map_arg*s :random y_pernute
map_builtin :count

:find_insert :flatten

:renmove_duplicates :"longest shortest"
sarrayset :check_nonstring_tell lines
:setrenove_al | :reverse_suspended

: append . _reverse_suspended

. reverse :random y_pernut e_suspended
_reverse suspended

. conpr ess :swap_el ement s

:sort :"random.item random el enent”
:sort_suspended :assoc_suspended

:slice s anerge

:assoc : passoc

;i assoc . set nove

i assoc_suspended ;iassoc_new

rassoc_prefix cbuild_alist

$lock_utils

;init_scanner s eval _key

. scan_t oken :mat ch_obj ect
: canoni cal i ze_spaces :unparse_key

. par se_keyexp seval _key_new
»parse_E i parse_A new

I parse_A

$UtIls 295

$match_utils

:mat ch

:match_nth
:match_verb
cmatch_|i st

$math_utils, $trig_utils

D Xsin

1 XCOS
:factorial

. pow

: fi bonacci

s geonetric

. di vnod

: conbi nati ons
. pernmut ati ons
. si npson
iparts

csqrt

cdiv

: nod

D exp

. aexp
:random

: random r ange
tis_prinme

: AND

: XOR

TR

- NOT

$matrix_utils

:"vector_add vector_sub
vector _mul vector _div"
:"matrix_add matri x_sub"

:transpose
: det er m nant
Jinverse

296 $Utils

:"parse_ordinal _reference

parse_ordref"

. parse_possessi ve_reference
:object_nmatch failed
tinit_for_core

: BLFr oml nt

21 nt FronBL

:"gcd greatest _comon_di vi sor"
:"lecm |l east _comon_nmnul tiple"
:"are_rel _prinme

are_relatively_prinme"

: base_conver si on
:norm

:sin

. CcOos

ttan

:"arcsin asin"
:"arccos acos"
:"arctan atan"
:"deg2rads deg2rad"”
:"rads2deg rad2deg”
: precision

:round

:"mean aver age"
:sum f | oat
:"sum.int sunt
crint

sidentity
cnul |

;i s_square
sis_null
tis_identity

:"cross_prod outer_prod
vect or _prod"

:"norm | ength"

:submatri x

:"dot_prod inner_prod
scal ar_prod"

: di mensi on*s

:order

:"scal ar _vector_add
scal ar _vector_sub
scal ar_vect or _nul
scal ar _vector _di v"

: subt ended_angl e

$object_utils

:has_property

:"all _properties all_verbs"
:has_verb
:has_cal | abl e_verb
:match_verb

tisa

;ancestors

. ordered_descendant s
:contains

call _contents
:findabl e_properties
:owned_properties
sproperty_conflicts

. descendants_with _property_sus

pended

;1 ocations

:"all _properties_suspended
al | _verbs_suspended"

$object_quota_utils

cinitialize_quota
cinit_for_core

»adj ust _quota_for_progranmer
:bi _create
:creation_pernmtted
:"verb_addition_permtted

property addition_permtted"

:"has_readabl e_prop*erty hrp
:"descendant s descendents”

.l eaves

: branches

:"descendant s_suspended

:colum
cmatri x_mul
:"scalar_matrix_nul

scal ar_matrix_div"

cis_matrix

(i s_vector

“"is_reflexive is_areflexive
:"is_symetric is_asymretric
:"is_transitive

is_atransitive"
relation_result

:Ts_partial_ordering

: connect ed

. i soneof
:defines_verb

. defines_property
:"has_any_verb

has_any_property"

descendent s_suspended”

;|1 eaves_suspended

: branches_suspended
:"di sowmn disinherit”
:accessi bl e_verbs
:accessi bl e_properties

:di splay_quota

:"get _quota quota_renaini ng"
: charge_quot a
:reinburse_quota

:set_quota

cprelimnary_rei nburse_quota
: can_peek

$Utils 297

:can_touch

$perm_utils

:controls

capply
:caller

$quota_utils

sinitialize_quota
:init_for_core
;adj ust_quota_for_progranmer
:bi _create
:enabl e create
:di sabl e_create
. parse_create_args
:"creation_permtted
verb addition_pernmitted
property addition_permtted
call _characters
:di spl ay_quot a
:get_quota
: charge_quota
:rei nburse_quota
:set_quota
. get_size _quota
:di spl ay_quot a_sunmary
:quot a_r emmi ni ng

$seq_utils

:"add renove"
:cont ai ns

: conpl erment

> uni on

ctostr

:for

s extract
ctolist
cfromlist
:fromsorted_Iist
cfirst

298 $Utils

:"controls_prop*erty

controls_verb"

. _chparent

:prelimnary_rei nburse_quota
:val ue_bytes

:"obj ect _bytes object_size"
:do_sunmmary

:sunmmari ze_one_user

:recent _object_bytes

: measur enment _t ask

s can_peek

:can_touch

: do_br eakdown

: obj ect _overhead _bytes

i property_over head_byt es
:verb_overhead_bytes

: add_owned_obj ect

: measur enent _t ask_nof ork

: measur enent _t ask_body

: schedul e_neasurenent _task
:task_pernmns
iproperty_exists

1| ast

1size
:fromstring
cfirstn

;| astn

:range

: expand
:contract
:_union
intersection

$set_utils

:uni on
intersection

:di ff*erence
:cont ai ns

: "excl usive_or xor"

$string_utils

. space
cleft

:right

:"centre center”

:"col umi ze col umi se"
cfromlist
cenglish_list

: nanes_of

: from seconds

ctrim

ctrim

strinr

:strip_chars
cstrip_all_but

: "upper case | owercase"
:"capitalize capitalise
:literal _object

:mat ch

match_str*ing

: mat ch_obj ect

:mat ch_pl ayer

:mat ch_pl ayer _or_obj ect
:find_prefix
rindex_d*elimted
:"is_integer is_nuneric
:ordi nal

: group_nunber
:english_nunber
:english_ordinal
:english_ones
senglish_tens
:subst*itute
:substitute d*elimted

:"difference_suspended

di ff _suspended"

: equal
sintersection_preserve_case

. _cap_property

: pronoun_sub

. pronoun_sub_secure

I pronoun_quot e

calt _pronoun_sub

- expl ode

swor ds

word_start

:to_val ue
cprefix_to_val ue
»_tolist

. _unquote

. _toscal ar

: par se_conmmand
:fromval ue

:"print print_suspended”
:reverse

:char _|ist

:regexp_quote

: connecti on_host nane_bsd
: connecti on_host nane
:from val ue_suspended
:end_expression
:first_word

: common

"title list*c list_title*c”
:"nanme_and_nunber nn

nane_and_nunber |i st
nn_list"

:"col umi ze_suspended
col ummi se_suspended”
;a_or_an

;index_all

$UtIls 299

:"match_stringlist > mat ch_suspended

match_string_list" sincr_al pha
:from ASCl | ;is_float
:to ASCl I ;inside_quotes
. abbrevi at ed_val ue :strip_all _but_seq

: _abbrevi ated_val ue

$time_utils

: day :fromonth
:nmont h :dst_m dni ght
;anmpm :time_sub
:to_seconds "mddyy ddmmyy”
1sun :parse_english_time_interva
fromctinme :seconds_until date
:"dhns :seconds_until _tine
dayshour sm nut esseconds” :rfc822 ctinme
;english_tinme "mddyyyy ddnmyyyy"
: from day
$wiz_utils
: set _progranmer :show_netwho_|isting
:set _pl ayer :show_netwho_fromlisting
. set _owner :"check_pl ayer request
. set_property_owner check _reregistration”
sunset _pl ayer s make_pl ayer
:set_property_flags :send_new pl ayer _rmmi |
:_set_property flags :do_make_pl ayer
: random passwor d :do_register
: queued_t asks :do_new _passwor d
i snewt . set _owner_new
cinitialize_owned :boot _idlers
:verify_owned_objects : grant _obj ect
:"connect ed_wi zards : connecti on_hash
connected_wi zards_unadvertis :newt _pl ayer
ed" lunset _programrer
:"all _w zards_adverti sed ;is_wzard
all _wi zards cexpire_nail
all _wi zards_unadverti sed" cexpire_mail _weekly
:renane_al | _i nstances :check_prog_restricted
:m ssed_hel p cexpire_mail _players
: show_mi ssi ng_hel p cexpire_mail _lists
;init_for _core :flush_editors

300 $Utils

:randomw zard :get _emni |l _address
:set_enmil _address

$Utils 301

Appendix C —Text of “LambdaM OO Takesa New
Direction” (L TAND)

LambdaM OO Takes a New Direction

<Wednesday, December 9, 1992>

I’'m sorry that what follows is so long, but | want to share the historical context
that | perceive for current events and for an announcement, which appears at the end
of this message.

| should note at the very beginning that | had planned to put this message
together several weeks ago, very soon after | posted my last *social-issues note. |
talked about the general idea with the other wizards at that time and | was supposed
to draft a message and send it around for approval. It seemed to me tonight, though,
that | was procrastinating an awful lot and that I’d better just write it and send it
now, while I’ m (temporarily) up-to-date on * social.

As a result, the other wizards are seeing all this at the same time as you are; |
don't think they’re going to be surprised (except to the extent that Haakon finally
doing something is aways surprising), but y’all should know that they haven't
approved this note in advance.

L S I S

Just over two years ago, | sent email to four people that | had met in the very
first MOO, written by ghond and run on belch.berkeley.edu. | knew those four
people by the same names they use(d) here: Gemba, Gary_Severn, Frand, and ghond.
The email explained that | had opened the first “LambdaMOQO”, running a server
derived from ghond’ s but with enough changes of my own that | gave it a new name.

There weren't very many of usin the early months, of course. Each of us pretty
much knew everyone else and the only bureaucracy concerned taking care that the
wizards didn’t step on each other’s toes in making changes to (and, really, creating
from scratch) the first core of the LambdaM OO database. We were avery small cadre
of friends (I remember the jubilation we all felt the first time there were more than 10
people connected at once) working together to build something that maybe, just
maybe, somebody el se would find interesting enough to visit more than once.

By the end of the third month or so, we had the core, the server, and the
documentation in sufficiently good shape that we felt OK announcing the existence
of LambdaM OO to rec.games.mud and thus inviting the world into our creation. By
this time, however, we already had (as | recall) hundreds of players created by people
who had heard of us simply by word of mouth. We were beginning to have a
community, though it was so small (“How small was it?’) that nearly every player
who had ever connected had been personally greeted by me. (1 know, it must be hard
to believe that | used to venture regularly from my den, but it’s so.)

303

We had, | think, already had some discipline problems, even then. | remember a
couple of assholes from PSU who came in, changed their names to things | wouldn’t
want to say in front of my mother, and started cursing at everyone in sight. |
remember going to try to talk to them about it, meeting stiff resistance, and finally
recycling them in frustration.

After the public announcement, of course, the place took a little leap in
popularity. We started seeing a wider variety of people coming through, | stopped
being able to greet each new player personally, and we started having disagreements
about what was and was not proper conduct here. Eventually, | was approached by a
number of players and asked to draft a set of rules for proper MOO behavior. It was
felt, by both myself and a number of the other players, that this was a new kind of
place, that we had gained some useful experience with how well or badly certain
kinds of behavior worked, and that at least some of the lessons we had |earned would
not be obvious to new users. With a written set of rules, we felt that new players
could perhaps learn from our experience and that maybe the amount of friction
would be reduced.

Accordingly (and after one of my usual periods of procrastination), | wrote a
draft set of rules based entirely (as | recall) on the suggestions made by the players
who had made the request. | showed the draft to a bunch of people and asked for
their comments on its style, completeness, and correspondence with their
impressions of the “right” way of things. After incorporating suggested changes, the
first version of “help manners’ was publicized in the newspaper; | had, | think, done
as good ajob as | could of trying to capture the public consensus of that (admittedly
early) time.

Perhaps surprisingly, “help manners” worked quite well in reducing the number
of incidents of people annoying each other. That society had a charter that reflected
the general opinion and social pressure worked to keep the MOO society growing
fairly smoothly.

We pretty much stopped growing over the summer of 1991, with a maximum of
about 25-30 people commonly connected at once. At the end of the summer,
though, as school restarted, we began growing almost alarmingly, with as many as 40
or 45 people often connected at the high points. 1 recall counting on the order of
350-400 people who had connected in the past week at that time.

As the society grew, so did the work load on the wizards We were all spending a
lot of time looking carefully at what players had built and deciding about requested
quota increases, as well as other things, including arbitrating various inter-player
disputes. The load of new players (with their understandable but frustrating
disinclination to read documentation) and the ever-increasing number of quota
requests were leading some of the wizards, including me, to feel stressed out and
overworked. It became clear to me that something had to be done to reduce the
wizardly workload, so at the very beginning of this year | created the Architecture
Review Board, to try to shift some of the burden off of the wizards and onto a larger
group of experienced players.

It took some working out, and I’'m not saying that it didn’t disturb a number of
players, but the ARB did eventually relieve the wizards of what had become an
intolerable burden. From our standpoint, anyway, it worked very well.

304 LTAND

A couple of months later, at the plaintive and repeated requests of the other
wizards, | agreed to move the MOO to a “registration” basis, where new players were
only created by people sending RL email to one of the wizards. This has also worked
to reduce some of the burden on wizards, since it introduced a degree of
accountability and a concomitant reduction in certain kinds of disputes and
discipline problems. | had resisted registration for months, worried that, among
other things, it might stifle the continued growth and evolution of the MOO society.

I needn't have been concerned. The growth has continued and continued,
forcing us to come up with new mechanisms and experimental solutions to the
inevitable growing pains. We created red-listing, black-listing, and grey-listing. We
created the @newt and @toad commands. We tried to block out a lot of people who
we thought were causing problems and then stopped trying because it's too hard to
be effective at that game. We were even forced to pop the top off of the limit on the
number of connections in order to meet the demands of LambdaM OO’ s growth.

Of course, during this whole time, we were fighting an increasingly losing battle,
to control and accommodate and soothe a larger and larger, more and more complex
community. We were trying to take responsibility for, now, the behavior and mores
of over 800 people a week, connecting from almost 30 countries of the world. We
were frustrated, many of the players were frustrated; the center could not hold.

Y ou can probably see where thisis leading.

I realize now that the LambdaMOO community has attained a level of
complexity and diversity that I’ve actually been waiting and hoping for since four
hackers and | first set out to build this place: this society has |eft the nest.

| believe that there is no longer a place here for wizardmothers, guarding the
nest and trying to discipline the chicks for their own good. It istime for the wizards
to give up on the ‘mother’ role and to begin relating to this society as a group of
adults with independent motivations and goals.

So, as the last social decision we make for you, and whether or not you
independent adults wish it, the wizards are pulling out of the
discipline/manners/arbitration business; we're handing the burden and freedom of
that role to the society at large. We will no longer be the right people to run to with
complaints about one another’s behavior, etc. The wings of this community are still
Weftl (as ar;]yone can tell from reading * social-issues), but | think they’re strong enough
to fly with.

There are a number of very important unresolved questions concerning the
transition to an out-of-the-nest society:

* What should happen to the ARB and the quota-granting process?
* Who should be making decisions about granting or refusing programmer bits?

* What do we do with the current “help manners’?

and almost certainly a bunch of other things I’ m not thinking of right now.

LTAND 305

mailto:@newt
mailto:@toad

My personal model is that the wizards should move into the role of systems
programmers: our job is to keep the MOO running well and getting better in a purely
technical sense. That implies, though, that we're responsible for keeping people from
getting “unauthorized” access; in particular, we still have to try to keep others from
getting wizard bits since the functional integrity of the entire MOO is clearly at risk
otherwise.

There are lots of details to be worked out, and | couldn’t possibly try to lay them
all out here even if | were capable of thinking of all of them in advance, but | am
committed to removing the wizards from the social sphere of the MOO entirely and
soon. Haakon, Nosredna, Geust, Slartibartfast, etc. will become technicians who work
for the society. Lambda, yduJ, JoeFeedback, Ford, etc. will much more clearly become
just another set of playersin this community with no more power or moral authority
than anyone el se.

It’s a brave new world outside the nest, and | am very much looking forward to
exploring it with the rest of you. To those who have noted that | have the ability to
shut down the MOO at any moment, that my finger is, after all, the one on the boot
button: you have nothing to fear on that score for the foreseeable future; only an
utter fool would put an end to such an exciting social experiment at so crucial atime
inits evolution.

I think we're going to have alot of fun, here... :-)
Haakon the technician and Lambda the lazy proletarian slob

306 LTAND

Appendix D — Text of “LambdaM OO Takes Another
Direction” (LTAD)

LambdaM OO Takes Another Direction

<Thursday, May 16, 1996>

On December 9, 1992, Haakon posted “LambdaM OO Takes A New Direction”
(LTAND). Itsintent was to relieve the wizards of the responsibility for making social
decisions, and to shift that burden onto the players themselves. It indicated that the
wizards would thenceforth refrain from making social decisions, and serve the MOO
only as technicians. Over the course of the past three and a half years, it has become
obvious that this was an impossible ideal: The line between “technical” and “social”
is not a clear one, and never can be. The harassment that ensues each time we fail to
achieve the impossible is more than we are now willing to bear.

So, we now acknowledge and accept that we have unavoidably made some social
decisions over the past three years, and inform you that we hold ourselves free to do
so henceforth.

1. We Are Reintroducing Wizardly Fiat

In particular, we henceforth explicitly reserve the right to make decisions that
will unquestionably have social impact. We also now acknowledge that any
technical decision may have social implications; we will no longer attempt to justify
every action we take.

Players will still have avoice, however. Your input is essential. We will keep our
existing institutions for now, with the modifications described below, but we
encourage you to develop ideas for replacing these institutions (as will be described in
section 2).

a Petitions

The petition system will remain in its current form, with the following change:

In cases where difficulties arise that were unanticipated by the vetting process,
we reserve the right to re-interpret and/or explicitly veto any clause of any passed
ballot.

We will continue to vet petitions, in order to minimize the use of ballot veto,
and we will continue to do so in terms of the existing vetting criteria in most cases.
However, we will not rule out the possibilities of vetting being denied for other
reasons, or of the vetting criteria being revised by fiat.

307

b. Arbitration

We explicitly reserve

 the right to veto any Arbitrator decision, particularly one that significantly
impairs the ability of the wizards to do their jobs.

+ the right to veto any Arbitration Change Pr#%posal that is cI_ear_I]y not a “minor
change” in the spirit of *Ballot:Arbitration (#50392) or that significantly impairs

the ability of the wizards to do their jobs.

These may be temporary measures, as we hope to facilitate revision or
replacement of Arbitration so that it may more adequately meet the needs of the
community.

c. Wizardly Actions with Social Implications

The wizards will no longer refrain from taking actions that may have social
implications. In three and a half years, no adequate mechanism has been found that
prevents disruptive players from creating an intolerably hostile working environment
for the wizards. The LTAND ideal that we might somehow limit ourselves solely to
technical decisions has proven to be untenable.

2. Alternatives to Wizards Making Social Decisions

We encourage you, the players, to devise new mechanisms that will help
minimize the need for the wizards to make unilateral social decisions. Severd
mechanisms, most notably the Arbitration system, seem less than ideal for the
purpose, yet are too deeply entrenched to be changed with the petition system. We
would like to try new mechanisms and to enable more radical changes than the
current petition system will allow. We would like the players to propose ideas for
major new institutions, and ways to select among the proposals. We hope this will
introduce a new dynamism to LambdaM OO that will allow us to find better solutions
to some of our more fundamental problems.

Similarly, we hope to facilitate an overhaul of the current petition and ballot
system if the players want it.

Do keep in mind, though, that we cannot keep LambdaM OO running without
the wizards Haakon has selected. “Cyberspace” and “new social reality” rhetoric
aside, so long asthe MOO is located on asingle RL machine at asingle RL site subject
to RL laws and liabilities, there will be those deemed responsible for the use of that
hardware. Part of the need for administrators is also inherent in the LambdaM OO
security model and the organization of LambdaCore, while some of this need is a
consequence of various quirks of LambdaMOO society (e.g., the correspondence
between RL identities and M OO identities needing to remain secret and yet the need
for someone to maintain it). While we might consider ways to decentralize some of
these tasks, the fact remains that we simply can’t decentralize everything. We are till
open to your suggestions for ways to decentralize what we can.

Suggestions such as:

308 LTAD

* persons not well trusted by Haakon might be granted wizard bits as a result of
popular election, or

* we might set up a “wizard machine’” to run arbitrary wizardly code with NO
human intervention at all

are not acceptable, however. There may be site administrators somewhere who will
accept the risks involved in implementing these ideas, but we will not.

3. Rgjection of the New Direction?

We redlize that not everyone will agree that this is the best new direction
LambdaM OO might take. We don’t doubt that some of the polemics among you will

be able to come up with adifferent slant, e.g. (just to save you some trouble),
wizardly blackmail
military coup
martial law
nuclear terrorism

Some of you may find the new direction so disagreeable that you will consider
ways to force an end to the new direction or ways to make the wizards lives
miserable because of it. Instead of making the use of civil disobedience or wizard

harassment be the necessary means for shutting down LambdaM OO, we will accept a
simple majority decision of the following form:

Any eligible voter may author a *shutdown” petition. This will be a pre-
vetted petition with a specific, fixed wording. Should the petition reach
ballot stage (by acquiring the usual signature threshold), a vote will be held to
decide whether LambdaM OO should be shut down. If the number of YES (we
should shut down) votes equals or exceeds the number of NO (we should not
shut down) votes received, LambdaM OO will be shut down after an 8-week
grace period. (Note, only one “shutdown” petition may be active at atime.)

Shutdown petitions will be implemented at the earliest opportunity.
4. The New Direction

We hope that LambdaM OO will become a more dynamic and enjoyable place for
the wizards and the players. We do not want to discourage lively debate or to deprive
players of a voice, and we encourage all of you to develop new ideas, mechanisms,

and social policies, so as to minimize the need for direct wizardly social intervention
as much as possible.

The Wizards of LambdaM OO

LTAD 309

Appendix E — A Compendium of LambdaM OO Ballots

This appendix provides a synopsis of (closed) LambdaM OO ballots, both passed
and failed. Ballots require a 2/3 majority to pass, with the exception of * B:Shutdown
(#100000), a special petition/ballot which requires only a simple majority to pass. A
summary such as this one is naturally a moving target; it is current as of May 10,
2003.

For more information about any ballot, you can log onto LambdaM OO and type

read <ball ot >. Each ballot is also a mailing list, containing discussion from the
petition stage through ballot closing.

#50392
Aliases. Arbitration
Title: Arbitration
Author: Grump (#122)
Closed: July 2,1993
Votes:. 270 in favor, 87 opposed, and 115 abstaining.
Status. Implemented
This ballot created the original LambdaM OO Arbitration system. It required the
establishment of aregistry of volunteer arbitrators, rules for calling a dispute,
provision for people to join disputes as “interested parties’, a provision for
overturning an arbitrator’ s decision, and a mechanism for making “minor changes”
to the dispute system. It also set some time limits for various phases of a dispute.
Much later, the wizards agreed that the | egislation-as-written was insufficiently
precise, and it probably would not have been vetted later in the life of the
petition/ballot system. But it was the first piece of legislation written, and it was
impossible to forecast the difficulties that lay ahead, including arguments about what
did and did not constitute a“minor change” and abuse of loopholes in the system for
sport.
(This ballot was repealed in February, 1999.)

#54055
Aliases. New-Arb, 5
Title: A New Structure For The ARB
Author: Xiombarg (#37636)
Closed: July 11, 1993
Votes: 188 in favor, 71 opposed, and 176 abstaining.
Status: Implemented
This ballot fixed the size of the Architectural Review Board (ARB) at 15 members,
and provided for the election of new ARB members. (Previously ARB members had
been appointed by the wizards.)

311

#50098
Aliases. Guest-Mail
Title: A Modification of Guest Mail Access
Author: Hagbard (#36271)
Closed: July 19, 1993
Votes. 219 infavor, 49 opposed, and 127 abstaining.
Status: Implemented
This ballot called for the provision of a mechanism whereby mailing list owners
could disallow posts from guests.

#51664
Aliases: public-commentary, amendments
Title: Public Commentary and Amendments

Author: Mickey (#52413)
Closed: October 16, 1993
Votes. 182 infavor, 97 opposed, and 271 abstaining.
Status: Defeated

This ballot called for a mandatory period of public commentary on a petition,
during which the petition could not accrue additional signatures. It furthermore
stipulated that after vetting, public commentary and a second, affirming signature
from the author, a petition would be removed from the author’ s control (i.e. the
author would no longer be able to edit the petition text, and the petition would
become “community property”. The ballot also specified aformal amendment
process.

#34167
Aliases. Time, Time limitation_for_petitions
Title: Time Limitations for the Petitions Process

Author: Moriah (#50459)
Closed: November 13, 1993
Votes: 415 in favor, 97 opposed, and 183 abstaining.
Status: Implemented
This ballot established expiration periods of 14 days for unvetted petitions, and
90 days for vetted petitions.

#24179
Aliases. 5-percent, 5%
Title: Reduce the Amount of Sigs Required for Ballot to %5
Author: Quinn (#19845)
Closed: December 24, 1993
Votes: 362 in favor, 167 opposed, and 219 abstaining.
Status. Implemented
This ballot changed the number of signatures required to promote a petition to
ballot status from 10% of the number of eligible voting populace logging in within
the past 30 days to 5% of that number.

312 LambdaM OO Ballots

#40768
Aliases: guest-booting, gb, boot
Title: @booting of guests
Author: edd (#54917)
Closed: December 30, 1993
Votes. 470 in favor, 136 opposed, and 136 abstaining.
Status: Implemented
This ballot mandated the creation of the @oot command, whereby players
older than four months could boot bothersome guests off the system. The boot
command requires areason for the booting, and itsuse islogged. Guests so booted
have their site blocked for one hour.

#49201
Aliases. newhelpmanners
Title: New Help Manners
Author: PatGently (#37637)
Closed: January 7, 1994
Votes. 337 infavor, 75 opposed, and 181 abstaining.
Status: Implemented

Thisballot instituted hel p nmanner s text as voted-on-by-the-people, and
required that the following be displayed to every character logging on for the first
time: “If you have not already done so, please type ‘help manners’ and read the text
carefully. It outlines the community standards of conduct, which each player is
expected to follow while in LambdaM OO.”

#55917
Aliases. @ban, @witness
Title: @ban and @witness
Author: Puff (#1449)
Closed: January 7, 1994
Votes: 295 in favor, 128 opposed, and 157 abstaining.
Status. Implemented

This ballot created two new commands. The @an command provides an easy
way for a player to ban another player (or any object) from all of the @anni ng
player’s rooms by typing in asingle command. The @v t ness command provides a
mechanism for logging conversations or transactions in away that can’'t be faked.
Thisisacredible way to prove that something actually happened, recognizing that
logs can easily be counterfeited.

LambdaM OO Ballots 313

mailto:@witness
mailto:@witness

#37175
Aliases;
Title:
Author:
Closed:
Votes.
Status:

Moderation, moderator, duty

Moderation: Immediate action against harrassers [SiC]
Quantum-V acuum (#53118)

January 7, 1994

217 in favor, 160 opposed, and 182 abstaining.
Defeated

This ballot proposed that players be able to issue a“mayday” signal and receive
immediate assistance from a mediator. It proposed that there be avote every 3
months to rank volunteer mediators for the degree to which they were trusted, and
stipulated that this would be the order in which the system would attempt to assign a
mediator to a particular “mayday” call.

#25812
Aliases:
Title:
Author:
Closed:
Votes:
Status:

quota-restructuring, g-r, g-i

A Rational Building Quota System

yduJ (#68)

January 7, 1994

271 in favor, 122 opposed, and 169 abstai ning.
Implemented

This ballot instituted byte-based quotain lieu of object-based quota.

#A42212
Aliases:
Title:
Author:
Closed:
Votes.
Status:

fix-ARB-éelect, fix-arb, arb-elect

Fixes to the ARB Election Process

Dred (#49925)

January 30, 1994

279 in favor, 36 opposed, and 200 abstaining.
Implemented

This ballot instituted some changes to the ARB election process:

Candidates must now accept nomination in order for their ARB petitions to
be promoted to ballots.

Candidates may withdraw at any time, including during the elections.

The nomination period for ARB candidates is shortened to one week.
Number of votes and abstentions will no longer be displayed until after
voting closes.

Allowable votes on ARB ballots becomeyes, no, or abst ai n.

Calculation of who wins was modified.

Number of available ARB seats determines number of candidates selected.

314 LambdaM OO Ballots

#HA7986
Aliases;
Title:
Author:
Closed:
Votes.
Status:

ARB-Rules

ARB Voting Rule Restructuring
Xythian (#24436)

March 3, 1994

207 in favor, 90 opposed, and 311 abstaining.
Implemented

This ballot instituted some specific rules for how the ARB would consider quota

requests:

L]

#57380
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Q vyzidti)ng period before a quota request may be acted upon (i.e. approved or
enied).

A request must be sponsored by an ARB member to be considered.
Voteswill be one of: yes, no, abst ai n, or del ay.

Limits on the amount of quota an ARB member may vote to grant, if yes:
Not more than the request is for, not less than half the amount the request
isfor.

Requests may close either by exceeding a specified time limit, or by accruing
enough votes to pass or fail. To pass, arequest must get three moreyes
votes than no votes. If the request isfor more than 100K, then it must get
four moreyes votes than no votesto pass.

After closure of arequest, avoting summary will be sent to the requester
and to *Publ i c- ARB.

A mechanism was created to automatically grant the quota, so that the ARB
actually grants the quota, rather than serving in an advisory capacity to the
wizards.

A mechanism was created by which the ARB may change its own rules.

The ballot specifies that the rules and any subsequent changes to the rules
shall be available to the public at all times.

57380

Removal of @ddf eat ur es on Guests

Dodger (#59267)

March 5, 1994

432 in favor, 162 opposed, and 130 abstaining.
Implemented

This ballot removed guests' ability to add and use feature objects (FOs). It also
permanently added the stage talk feature and the social verb core feature to the
generic guest so that guests would have the use of these.

LambdaM OO Ballots 315

#54631
Aliases. @boot2, Add-On-@boot
Title: Adding a second @boot
Author: Ox (#54875)
Closed: March 6, 1994
Votes. 372infavor, 134 opposed, and 192 abstaining.
Status: Implemented
This ballot created the requirement that a second player must ratify afirst
player’s request to @boot a guest.

#63052
Aliases. dt, tq, transferrable_quota, quota_transfers
Title: Quota Transfers

Author: dr (#7003)
Closed: April 11, 1994
Votes. 264 infavor, 122 opposed, and 137 abstaining.
Status: Implemented
This ballot enabled players to transfer unused quota among themselves. Quota

transfers are public, posted to the mailing list, * Quot a- Tr ansf er - Log.

#75104

Aliases: mpg, minimal_population_growth

Title: Minimal Population Growth

Author: legba (#26603)

Closed: May 4, 1994

Votes: 719 infavor, 191 opposed, and 181 abstaining.
Status. Implemented

This ballot established awaiting list for new-player requests, and limited the
number of new players created to 5 per day. Additional players may be created on a
par with number of players reaped.

New players are assigned numbers rather than names, so that they won’t tie up
aliases while awaiting their character assignments. They may @ enane themselves
when they first connect.

Players who request characters but never log on are reaped after 30 days.

The creation-limit of 5 per day, the wait list size limit of 500 requests, and the
time periods of expiration may be changed at the wizards' discretion, though the
wizards are requested to notify the public if they do, in fact, make such changes.

316 LambdaMOO Ballots

mailto:Add-On-@boot
mailto:@boot
mailto:@boot

#60535
Aliases: AntiRape, Anti-Rape, StopRape, Stop-Rape, Virtual_Rape Consequences, p:a,
a
Title: Virtual Rape Consequences
Author: Nancy (#57980)
Closed: July 12, 1994
Votes. 541 infavor, 379 opposed, and 167 abstaining.
Status: Defeated
This ballot proposed a definition of “rape” within the context of MOO, and also
definitions for “acts’ and “ speech”, and furthermore stipulated that the act of rape be

punishable by @ oadi ng (permanent expulsion from the community).

#22581
Aliases. Loopholes
Title: Closing Loopholes in Petition Timeouts

Author: Lambda (#50)
Closed: July 14, 1994
Votes. 462 infavor, 78 opposed, and 335 abstaining.
Status: Implemented
This ballot revised the time limits for petitions and ballots to fix the fact that
under the previous limits, there were some |oophol es such that some petitions would
never expire. The new limits are asfollows:
. If apetition has no signatures, then it also has no expiration date.
. If a petition has signatures and vetting has not been requested, then it
expires 14 days after the last moment when there were no signatures.
. If vetting has been requested and neither granted nor denied, then no new
signatures may be gathered on the petition.

. If a petition has been vetted and has not become a ballot, then it expires 90
days after vetting was granted.
. If a petition has been denied vetting, then its signatures are removed.

The ballot included language to set limits for petitions that currently existed at
the time.

#68149
Aliases. Abuse, NoRape, Ab, NR
Title: Abuse by Any Other Name...
Author: Linnea (#58017)
Closed: July 28, 1994
Votes:. 522 infavor, 211 opposed, and 232 abstaining.
Status: Implemented
This ballot called for the following text to be added to hel p manner s under the
section called “Don’t Abuse Other Players’:

LambdaM OO Ballots 317

* Sexual harassnment (particularly involving unsolicited acts which
simul ate rape against unwilling participants). Such
behavior is not tolerated by the LanbdaMOO community. A
singl e incidence of such an act may, as a consequence of
due process, result in permanent expul sion from LambdaMOO.

The ballot furthermore confirmed (through passage) that the community thinks
that expulsion is within the scope of reasonable penalties for an act of this kind.

#55789
Aliases: 1-Month-Booting, 1mb, 1, 3, pt, 3mb, Sign_Me!!!
Title: Reduce The @Booting Age To 1 Month
Author: Stetson (#65101)
Closed: July 31, 1994
Votes: 315in favor, 367 opposed, and 228 abstaining.
Status: Defeated
This ballot proposed the following:
. Extend @oot i ng privilegesto all players eligible to vote (on
LambdaM OO). In the event the voting age changed, the @oot i ng age
would have changed alongside it.
. Increase the time limit for @oot i ng from 2 minutes to 5 minutes.
. Requirethat a @i t ness log be taken prior to a @booting.
. Playersinvolved in @oot i hg a guest should be prepared to defend their
action in mediation.
. The guidelines for whether a @oot was an acceptable action shall be
simple, relying upon the common sense of all partiesinvolved. These
guidelines shall be decided upon by mediation precedents.

#37152
Aliases: IRN
Title: Information, not Restricting Newbies (IRN)

Author: Individua (#63209)
Closed: July 31, 1994
Votes: 487 in favor, 160 opposed, and 222 abstaining.
Status: Implemented

This ballot stipulated that at times when the number of people connected was so
high that the system was inhibiting additional connection, information would be
added to the login screen, identifying other M OOs that people might visit, instead.

It also called for a message to be added to the registration text giving suggestions
of other MUDs that might be as enjoyable, and less crowded.

318 LambdaMOO Ballots

mailto:@Booting
mailto:@booting

#68461

Aliases. DisbandMediation

Title: We Just Aren’t Ready

Author: Sunny (#58292)

Closed: August 17, 1994

Votes. 230 in favor, 433 opposed, and 335 abstaining.
Status: Defeated

This ballot proposed that M ediation/Arbitration as passed by L ambdaM OOers
(Petition ARB, #50392, that went on to become a ballot, was passed and is now
readable in #9221) be rescinded, and that the petitions process be the only legally-
recognized way to effect changes to LambdaM OO society.

It also proposed that petitions concerning themselves with “behavioral or
mannerly conduct” only be considered “valid” if they could be implemented
programmatically.

It also proposed an elected board of 15 players (all at least three months of MOO
age) and two wizards, serving in an advisory capacity. The board’ s charter would be
to discuss and then write up a petition listing behaviors that would automatically no
longer be an option for players. Special protocols were specified for this petition-by-
committee.

It furthermore required that this board of 15 players and 2 wizards
collaboratively craft a document that would explain manners, tools (commands)
available to the players of LambdaM OO, e.g., @ag, @ ef use, @ ef use nove,

@ ef use spam etc., in addition to ageneral policy statement about promoting
peace, gooawill, and neighborliness towards others that one meets on LambdaM OO.
All players, new and old, would be required to read and sign this document within 24
hours of receiving it in order to continue connecting to LambdaM OO.

#46185

Aliases: guest-registration, g-registration, g-r, gr

Title: Guest Registration

Author: Mickey (#52413)

Closed: August 31, 1994

Votes: 289 in favor, 272 opposed, and 155 abstaining.
Status: Defeated

The stated purpose of this petition was “to reliably associate guests with RL

identities.” Therefore:

. The ability to do connect guest would be removed.

. Secondary player creation would be streamlined, no longer requiring the
intervention of a human typist.

. A command that could be typed at the login screen would be created which
would enable people to request a guest for a specified email address. A
“Validated Guest Access’ (VGA) password would be sent to the email
address for later use.

LambdaM OO Ballots 319

. Guest e-mail address information would be accessible by the wizards and
could legally be turned over to a mediator in the event that the guest is
disputed. Mediators powers would extend not only to that person in their
guest identity but also to any primary or secondary characters held by the
person at that e-mail address.

. @oot i ng of guests would be modified only to affect connections from a
particular email address and not an entire site.

#59983
Aliases. mooerofthemonth, motm
Title: MOQer of the Month Proposal
Author: Foobies (#23371)
Closed: October 4, 1994
Votes. 540 in favor, 313 opposed, and 287 abstaining.
Status: Defeated
This ballot proposed the establishment of the award, MOOer of the Month, the
criteriafor eligibility to receive the award, and a process for determining the winner.
(Author’s note: Thisballot is particularly delightful to read.)

#7887
Aliases:. Terms
Title: Term Durations for ARB Members
Author: Quinn (#19845)
Closed: October 20, 1994
Votes. 488 in favor, 95 opposed, and 450 abstai ning.
Status: Implemented
Thisballot set the term limit for ARB members to one year, placing no limits on
serving consecutive terms. There are provisions to hold elections twice ayear, and
f?r what to do if a member resigns or is otherwise removed from office in the middle
of eir term.

#11351
Aliases: Speed
Title: Speed Up the Petitions Process
Author: Quinn (#19845)
Closed: October 27, 1994
Votes. 449 infavor, 172 opposed, and 407 abstaining.
Status: Implemented
This ballot changed the number of signatures required to bring a petition to
ballot to 10% of the average of all votesfor and against all previous closed ballots, not
to be less than 50.

320 LambdaMOO Ballots

#4430
Aliases. GuestFO
Title: FO Owner may OK Guest use
Author: cARROT (#47498)
Closed: November 11, 1994
Votes. 517 infavor, 229 opposed, and 226 abstaining.
Status: Implemented
The ballot empowered Feature Object owners to make feature objects okay for
guest use. It contains a provision to prevent certain features from being marked as
okay, and for preventing specified players from marking their FOs as okay.

#54635
Aliases. NoNewt
Title: NoNewt
Author: Kilik (#2819)
Closed: November 11, 1994
Votes. 272 infavor, 140 opposed, and 451 abstaining.
Status: Defeated
This ballot attempted to remove a particular mediator’ s verb which enabled that
mediator to newt two specified players for up to one year (as aresult of a dispute).
The measure was crafted as a ballot because of jurisdictional limitations within the
arbitration system.

#6887
Aliases: Banish_Sunny_from_our_MOO, toadsunny
Title: @toad Sunny
Author: Euphistophel es (#50222)
Closed: November 11, 1994
Votes. 252 infavor, 519 opposed, and 315 abstaining.
Status: Defeated
This ballot called for the player then known as Sunny (#58292), along with all
known secondary characters, to be @ oaded and the typist prohibited from having a
character on LambdaM OO.

#80344
Aliases. namechange, nc
Title: The Dawning of A New Era
Author: Foobies (#23371)
Closed: November 12, 1994
Votes. 168 in favor, 586 opposed, and 194 abstaining.
Status: Defeated
This ballot proposed that the welcome screen be changed to read,
“* Welcome to FoobiesM OO *”. It furthermore suggested that the M OO incorporate
sound so we at least hear Muzak during the periods of lag.

LambdaM OO Ballots 321

#44060
Aliases. P-R, Petition-Restrictions, PR
Title: Petition Restrictions
Author: Mickey (#52413)
Closed: November 15, 1994
Votes. 259 in favor, 231 opposed, and 345 abstaining.
Status: Defeated
| This ballot proposed to prohibit future petitions that would target individual
players.

#78600
Aliases:. No-singling-out-individuals, n
Title: No-individuals
Author: X’iina (#58335)
Closed: November 16, 1994
Votes. 322 infavor, 255 opposed, and 290 abstaining.
Status: Defeated
This ballot stipulated, “No petition which designates an individual player by
name or by object number may be vetted.”

#9895
Aliases. slow
Title: Slow Down the Petitions Process!

Author: jaime (#35330)
Closed: November 21, 1994
Votes: 293 in favor, 254 opposed, and 328 abstaining.
Status: Defeated
This ballot proposed that the number of signatures required to bring a petition to
ballot be 25% of the average of all votes for and against all previous closed ballots,
not to be less than 100.

#37489
Aliases. Guts
Title: | Wouldn't Vote Yeson Thisif | Were You

Author: Foobies (#23371)
Closed: November 27, 1994
Votes: 182 in favor, 403 opposed, and 362 abstaining.
Status. Defeated
The stated purpose of this ballot was to achieve the lowest Y es/No ratio in ballot
history.

322 LambdaM OO Ballots

#81387
Aliases. unique, nomonames, Use-Imagination
Title: Disallow New Char Names as Extension of Existing Chars
Author: Abraxas (#42395)
Closed: November 30, 1994
Votes. 480 in favor, 256 opposed, and 213 abstaining.
Status: Defeated
This ballot proposed disallowing character names with the form of an existing
character name with the suffix “-2", “-3”, and so forth.

#67528
Aliases. ARBage
Title: Change ARB age to Four months
Author: Gryndel (#85344)
Closed: December 2, 1994
Votes. 217 infavor, 355 opposed, and 278 abstaining.
Status: Defeated
This ballot proposed making the minimum M OO age to run for the ARB four
months instead of one year.

#71774
Aliases: RegisterGuests, RG, Register, Reg, R
Title: Registration for Guests
Author: Stetson (#65101)
Closed: December 10, 1994
Votes: 434 infavor, 306 opposed, and 192 abstaining.
Status: Defeated
This ballot proposed a password/code plan by which guests would register to an
email address and have a code displayed in their descriptions. In the event of a
dispute, a guest’ s email might be accessed by awizard and potentially matched with

that of an established player. Disputes and @oot actions against guests would also
be narrowed to the particular associated email address rather than a guest’ s entire site.

#13428
Aliases: 100-Sigs, 100-Signatures, 100
Title: 100 Signatures
Author: Mickey (#52413)
Closed: December 18, 1994
Votes. 391 infavor, 267 opposed, and 374 abstaining.
Status: Defeated
This measure proposed changing the signature threshold for promoting a
petition to a ballot to aflat 100 signatures.

LambdaM OO Ballots 323

#56935
Aliases;
Title:
Author:
Closed:
Votes.
Status:

RA

RescindArbitration-ThrowOutTheBums

Sunny (#58292)

January 16, 1995

296 in favor, 374 opposed, and 342 abstaining.
Defeated

Thisballot called for the repeal of *B:Arbitration (#50392) and would
furthermore render all @ewt i ngs and @ oadi ngs as aresult of arbitration null and

void.

#4930
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Options

Signature Options

Miles (#50636)

January 20, 1995

252 in favor, 278 opposed, and 333 abstaining.
Defeated

This ballot proposed permitting petition signatories to designate either ‘yes’ or
‘no’ as part of the act of signing. It proposed to eliminate time limits on petitions,
and substituted three necessary criteriafor a petition to become a ballot, instead:

L]

The signature threshold is reached.

The petition has been vetted.

The number of “yes’ signaturesis greater than the number of “no”
signatures.

Petitions would be able to gather signatures during the vetting process.

#84988
Aliases:
Title:
Author:
Closed:
Votes:
Status:

84988

Beware of Foobies!

Trees Beatnik (#64541)

January 22, 1995

227 in favor, 430 opposed, and 233 abstaining.
Defeated

This ballot proposed appending the line, “ Beware of Foobies...he' svery silly.” to
the welcome screen.

324 LambdaM OO Ballots

#86488
Aliases. Guest Description, GD
Title: Guest Description
Author: Gary (#56296)
Closed: January 24, 1995
Votes. 378infavor, 295 opposed, and 196 abstaining.
Status: Defeated
This ballot proposed a method by which guests could optionally be associated
with an existing player. Guest descriptions would either identify the player with
which the guest was linked or display the site from which the (unlinked) guest was
connecting.

#41859
Aliases: FixBoot
Title: Fix the @boot command, (FixBoot)
Author: Dave (#77480)
Closed: February 8, 1995
Votes:. 634 infavor, 50 opposed, and 205 abstaining.
Status: Implemented
This ballot changed the @oot command so that the message notifying the room
that a player had initiated the @oot sequence and wanted a second would only be
displayed to other players eligible to use the @oot command, and specifically would
not be displayed to guests.

#79422
Aliases. Restrain
Title: Restrain Mail Abusers
Author: Quinn (#19845)
Closed: February 15, 1995
Votes. 316 infavor, 231 opposed, and 332 abstaining.
Status: Defeated

This ballot proposed that anew @ est r ai n command be created (similar to the
@ ef use command, with arefusee and a duration argument) having the following
effects for the given duration upon the person on which it is used:

E cannot post to any list except those e owns, or the lists of disputesin which e
is adisputant.

. E may not send MOOmail to any player.
E may not call or arbitrate disputes.
E may not make petitions.
E may not be nominated for the ARB, or any other publicly elected office.
Guests from all sites from which e has connected are forbidden from
directly using the mail system for purposes other than mailing *Wiz or
*Reg. (They may still @ equest characters.)

The command could be issued by wizards only, and only as aresult of due
process. “Due process’ was defined as the Arbitration and Ballot systems.

L] L] L] L]

LambdaM OO Ballots 325

mailto:@boot

#88119
Aliases: 99-Sigs, 99, Signatures, Sigs
Title: 99 Signatures
Author: jaime (#35330)
Closed: February 15, 1995
Votes. 372infavor, 192 opposed, and 293 abstaining.
Status: Defeated
This measure proposed setting to 99 the number of signatures required to
promote a petition to a ballot.

#62953
Aliases: NoNewt2, NN2
Title: NoNewt |1
Author: Kilik (#2819)
Closed: February 19, 1995
Votes. 300 in favor, 139 opposed, and 456 abstaining.
Status: Implemented
This ballot removed a particular mediator’ s verb which enabled that mediator to
newt two specified players for up to one year (as aresult of adispute). The measure
was crafted as a ballot because of jurisdictional limitations within the arbitration
system.

#76165
Aliases. ballot-restrictions
Title: No @toading by ballot
Author: HumbertHumbert (#64152)
Closed: February 24, 1995
Votes. 271 infavor, 261 opposed, and 367 abstaining.
Status: Defeated
This ballot proposed to prohibit the @ oadi ng of an individual by ballot,
retroactively.

#54019
Aliases: Registration, Global Registration
Title: Global Registration
Author: PatGently (#37637)
Closed: March 1, 1995
Votes: 499 in favor, 251 opposed, and 265 abstaining.
Status: Defeated
Thisballot called for existing characters without registered email addresses to be
brought into compliance with the then-current registration requirements for new
players, by requiring those players to register and have validated an identified email
account.

326 LambdaMOO Ballots

mailto:@toading

#85122
Aliases; Extend, xt
Title: Extended Time Limits
Author: Rat (#50816)
Closed: March 24, 1995
Votes. 537 infavor, 145 opposed, and 327 abstaining.
Status: Implemented
This ballot requires that time lost due to system down time be “reimbursed” to
‘timed issues’ such as ballots petitions, disputes, ARB-ballots, ARB-petitions, ARB-
issues, quota requests, newtings, toadings, and site locks.

#71687
Aliases: SpeedUpFOs& Reducel ag!
Title: Speed Up FOs and Reduce Lag
Author: Kilik (#2819)
Closed: March 25, 1995
Votes. 886 infavor, 31 opposed, and 150 abstai ning.
Status: Implemented
This ballot called for feature objects to be cached, thus reducing the ticks
required to look them up.

#16109
Aliases. BootFixl|
Title: Don’t Reassign Booted Guest Names for Five Minutes
Author: Topher (#55250)
Closed: March 27, 1995
Votes. 762 infavor, 70 opposed, and 193 abstaining.
Status: Implemented
Thisballot called for @oot ed guests names not to be reassigned for five
minutes after the @booting, to reduce harassment of new guests who happened to
draw the same name as a just-booted guest.

#72846
Aliases. reg2, registration2
Title: Registration 2
Author: PatGently (#37637)
Closed: April 5,1995
Votes: 483 in favor, 235 opposed, and 265 abstaining.
Status. Implemented
This ballot sought to alleviate inequities between new characters, required to
register to get their character, and older players who had been grandfathered out of
that requirement. It required that unregistered characters become ineligible to do
any of the following:

LambdaM OO Ballots 327

mailto:@booting

. sign petitions and vote on ballots
. volunteer as arbitrators
. propose or vote on arbitration changes

. act as peer review for arbitration through the use of overturn, bar, and any
similar verbs that may be created

. serve on the ARB
. request quota from the ARB
transfer quotato others

After 30 days, unregistered characters would have their quota set to 0. They
could still register after that point, but the quota would not be restored.

Registration, which could be done at any time, restores voting rights and the
other above-listed eligibilities to characters otherwise eligible.

Registration information shall be available only to wizards, who may not release
it even at arbitrator request. (There had previously been some lay registrars,
appointed by the wizards.)

#13218
Aliases: Progbit-regulation, prog-r
Title: Progbit-regulation
Author: Cable (#50066)
Closed: April 7,1995
Votes:. 373 infavor, 302 opposed, and 284 abstaining.
Status: Defeated
This ballot proposed that in order to receive a programmer bit, one would have

to be one month old and have read hel p manners.

#50190
Aliases: TTONTT
Title: ToToadOrNotToToad
Author: Sunny (#58292)
Closed: April 14, 1995
Votes. 241 infavor, 466 opposed, and 282 abstaining.
Status: Defeated
This ballot proposed that anyone who authored a ballot to @ oad someone
would be @ oaded emself if that ballot failed.

#87664
Aliases: NotifyVotersOf ArbProposals
Title: *P:NotifyV otersOf ArbiProposals
Author: JohnBoy (#85460)
Closed: April 15, 1995
Votes: 459 in favor, 125 opposed, and 316 abstaining.
Status: Implemented
The implementation of the arbitration system included a mechanism for making
“minor changes’ to the arbitration system. This ballot called for all eligible voters to
be notified of new arbitration proposals that were up for consideration.

328 LambdaM OO Ballots

#17532
Aliases. Raise Quota, Quota
Title: Raise Quotato 75K each
Author: Bats! (#91438)
Closed: April 17, 1995
Votes. 625 in favor, 320 opposed, and 169 abstaining.
Status: Defeated
This ballot proposed granting an additional 25K of quotato all current non-
secondary characters, and increasing the initial amount of quota given to new
characters from 50K to 75K.

#82103
Aliases. ChangeArbitration
Title: Changing Arbitration
Author: QUARTIow (#87310)
Closed: April 22, 1995
Votes. 218 in favor, 207 opposed, and 434 abstaining.
Status: Defeated
This ballot proposed dismantling the arbitration change system and requiring
that all further changes to the arbitration system be accomplished using the
petition/ballot system, instead.

#91099
Aliases. Hate-Crime, hate
Title: Hate-Crime
Author: Tapu (#90997)
Closed: April 25, 1995
Votes. 523 infavor, 271 opposed, and 207 abstaining.
Status: Defeated
This ballot proposed adding the following text to hel p manners:

Race Hate in the public areas is not tolerated by the
LanbdaMOO comunity, and nmay be grounds for @oading, as a
consequence of due process.

LambdaM OO Ballots 329

mailto:@toading

#4223
Aliases: Patch-Arbitration-Loopholes, Patch_Arbitration_L oopholes, P-A-L, P_A_L,
PAL, TT
Title: Patch Arbitration Loopholes
Author: Mickey (#52413)
Closed: April 26, 1995
Votes: 339 in favor, 166 opposed, and 354 abstaining.
Status: Implemented
This ballot sought to patch various loopholes in the arbitration system which
some people had taken advantage of, and to establish that taking advantage of any
loophol e was unacceptable behavior and itself subject to the arbitration process.
It established the following general principles:
. QII characters are subject to the arbitration system, even if they claim not to
e.

. Disputes are between typists, not characters. Arbitrators may call for
punitive action to be taken against all of someone’ s characters, not just the
oneformally involved in a particular dispute.

. No one may exploit multiple characters to beat the system.

. Events that occur off-M OO, or accounts thereof, shall not be considered
relevant to any dispute.

. Disputes that have never been formally started shall not count for the
purpose of determining conflict of interest status.

. Taking personal advantage of loopholes instead of reporting them is
officially an antisocial act.

#13093
Aliases. p-c
Title: Pest Control: @blacklisting frequently-@booted Guests
Author: Naked Guest (#50453)
Closed: April 30, 1995
Votes. 493 infavor, 263 opposed, and 203 abstaining.
Status: Defeated
This ballot proposed to track @oot requests against guest sites, @I ackl i sting

sites (i.e. prohibiting guest login from them) if there were 10 or more @oot requests
against guests from that site within 30 days.

It proposed that a mechanism be provided by which people could request
characters without logging in as guests.

People requesting characters from sites @bl acklisted through this mechanism
would not be added to the waitlist until 14 days after making their initial request.

330 LambdaMOO Ballots

mailto:frequently-@booted
mailto:@blacklisted

#82852
Aliases. Bewarel
Title: Beware of Moo palitics.
Author: Chris-22(politician-beware!) (#86562)
Closed: May 6, 1995
Votes. 304 in favor, 403 opposed, and 253 abstaining.
Status: Defeated

This ballot called for a 3-week modification to a player’ s description if e wrote a
petition pertaining to M OO politics and that petition was vetted. Gilmore (#34435)
was designated as arbiter in the event of question as to whether a petition pertained
to M OO politics for purposes of this measure.

A petition would be considered to have M OO Palitics asits subject if its primary
purpose was to enact changes in the rules governing one of the following: petitions,

ballots, arbitration, Architecture Review Board, @ oadi ng, @ewt i ng.

#76501
Aliases: Quiet-in-the-Coat-Closet, QCC
Title: Quiet in the Coat Closet
Author: Yib (#58337)
Closed: May 8, 1995
Votes. 384 infavor, 381 opposed, and 224 abstaining.
Status: Defeated
This ballot proposed disabling certain verbs in the LambdaM OO coat closet,
which would have the effect of simulating each player being the only one present.

#72623
Aliases:. QCC2
Title: Qui et-in-#100000!
Author: abstract (#94368)
Closed: May 8, 1995
Votes: 384 infavor, 319 opposed, and 218 abstaining.
Status: Defeated
This ballot proposed creating (or taking by eminent domain) object number
#100000, changing players’ first connect point to that location, and making that
location quiet, to allow guests and new players to read help texts, etc. without noisy
interference from others.

LambdaM OO Ballots 331

#10216
Aliases. Voter-Registration, vr
Title: Register Characters who Intend to Vote
Author: Stetson (#65101)
Closed: May 16, 1995
Votes. 317 infavor, 302 opposed, and 251 abstaining.
Status: Defeated

This ballot proposed requiring players to register in order to be able to vote on
ballots or otherwise participate in the LambdaM OO political and arbitration systems
(other than as a disputant). The measure directed that records of who voted on
which measures would be kept, and specified penalties for voters who were found to
have used multiple characters to bypass the one-vote-per-typist principle.

#90968
Aliases. Personal-Mail-Quota, Personal_Mail _Quota, P-M-Q,P_M_Q, PMQ
Title: Personal Mail Quota
Author: Mickey (#52413)
Closed: May 21, 1995
Votes: 467 in favor, 162 opposed, and 259 abstaining.
Status. Implemented
This ballot calls for the mandatory netforwarding and subsequent del etion of

MOOmail messages marked as “kept” if the owner of those messages is over quota by
more than 5K.

#12309
Aliases: wiffle, bat, melee
Title: Choosing Justice
Author: darkrider (#7003)
Closed: May 31, 1995
Votes: 345infavor, 376 opposed, and 268 abstai ning.
Status: Defeated

This ballot proposed that an alternative to the Arbitration system be added, in
which players would be issued plastic wiffle bats with which to whap each other in
lieu of filing disputes. It specified a system of points, damage, and healing; the
penalty for accumulating more than a certain number of points would be a 24-hour
newting. The ballot also specified procedures for the cases where a person registered
under the arbitration system and awiffler came into conflict, and vice versa, and for
switching the system under which one was registered.

332 LambdaM OO Ballots

#72724
Aliases:. The-Linen-Closet, TLC, LC, The Linen_Closet
Title: A Quiet Starting Place for Guests and New Players
Author: Yib (#58337)
Closed: June 2, 1995
Votes. 614 infavor, 153 opposed, and 178 abstaining.
Status: Implemented
This ballot established The Linen Closet (#47726) as the guest connection point
and default home for new players. The Linen Closet differs from The Coat Closet
(#11) in that it simulates a player being alone, thus providing a quiet place in which
to read help text, news, etc. before joining a noisy environment.

#1319
Aliases: Login-Choice, Ic-q
Title: ToBeOrNotToBe-Quiet
Author: active (#91798)
Closed: June 6, 1995
Votes: 481 in favor, 209 opposed, and 230 abstaining.
Status: Implemented
Thisballot called for guests and new players to be offered a choice between a
noisy or aquiet starting point as part of the connection process.

#54577
Aliases: Court, JRB, JURB, Judiciary, Supreme-Court
Title: Judicial Review Board, ak.a. The LambdaM OO Supreme Court
Author: Rog (#4292)
Closed: June 15, 1995
Votes. 321infavor, 226 opposed, and 371 abstaining.
Status: Defeated

This ballot sought to establish an elected Judicial Review Board whose charter
would be “to supply the final word on the interpretation of any given law/petition.
They [would] also serve as an appeals court to hear various kinds of challenges
concerning actions taken by the wizards or various organizations (i.e., executive
bodies) likethe ARB.”

#88677
Aliases. Cool!
Title: I’m OK. You're OK. They’re not OK.

Author: crayon (#39390)
Closed: June 17, 1995
Votes: 287 infavor, 578 opposed, and 187 abstaining.
Status: Defeated
This ballot called for an 8-month moratorium on the creation of new players.

LambdaM OO Ballots 333

#81878
Aliases;
Title:
Author:
Closed:
Votes.
Status:

This ballot instituted a rule whereby only 2 newbies could be created for every 3
players reaped until the LambdaM OO popul ation decreased to 5000, at which point 1

lower, lag

Time to lower lag

Avenger (#50204)

June 18, 1995

568 in favor, 266 opposed, and 171 abstaining.
Implemented

newbie could be created for every 1 player reaped.

#62341
Aliases:
Title:
Author:
Closed:
Votes.
Status:

crime_and_manners, ¢ and m, cm

Crime and Manners

HumbertHumbert (#64152)

June 21, 1995

457 in favor, 175 opposed, and 258 abstaining.
Implemented

This ballot created a change in the text of hel p manners. New/changed
paragraphs were added to the section titled “Don’t Abuse Other Players’. Those
paragraphs were, “Hate speech in public areas’, and “General”. Two intervening
paragraphs were changed in format but not content.

#91235
Aliases;
Title:
Author:
Closed:
Votes:
Status:

Nothing

DoNothing

Brack (#90845)

June 25, 1995

251 in favor, 256 opposed, and 319 abstaining.
Defeated

This ballot stipulated that upon passage, nothing would happen, and “Life on
LambdaM OO will continue as normal. At least, normal for this MOO.”

#88952
Aliases:
Title:
Author:
Closed:
Votes:
Status:

This ballot proposed eliminating the then-current Arbitration Change Proposal

ChangeProposals

Voting & validation on simple changes

gru (#122)

June 25, 1995

189 in favor, 144 opposed, and 372 abstaining.
Defeated

system in favor of a more generalized change proposal system that had its limits
specified (by the ballot) in greater detail.

334 LambdaM OO Ballots

#28677
Aliases; Social-Ballots, SB
Title: Social Ballot System
Author: GrendelFish (#88093)
Closed: June 26, 1995
Votes. 241 infavor, 177 opposed, and 297 abstaining.
Status: Defeated
This ballot proposed giving petitions/ballots with strictly social content (i.e. not
requiring technical action on the part of the wizards) valid legal standing.

#78996
Aliases. no-arbitration, Arbitration-Schmarbitration, SchmArbitration
Title: Repeal Arbitration.
Author: Tchinek (#54886)
Closed: June 30, 1995
Votes. 207 infavor, 310 opposed, and 265 abstaining.
Status: Defeated
The petition called for the repeal of * B:Arbitration and the abolishment of all
artifacts generated because of it.

#95947
Aliases: Adjustment, adj
Title: * P: Adjustment
Author: Angharad (#79047)
Closed: July 3, 1995
Votes: 330 in favor, 120 opposed, and 291 abstaining.
Status. Implemented
This ballot restored voting rights (and other rights) to previously-unregistered
players who later registered.

#95983
Aliases: Lower_The Lag, LTL
Title: Lower The Lag Even More
Author: Chris-22 (#86562)
Closed: July 10, 1995
Votes. 172 infavor, 248 opposed, and 443 abstaining.
Status: Defeated

This ballot ostensibly called for the repeal of #81878 (Time to lower lag), whose
title touted lowering lag but whose content addressed |owering population.
*B:Lower_The Lag wasfielded as an experiment, to try to see how many people voted
for petitions based on title alone rather than the content of the ballot’ s text.
“Educated voters’ were encouraged to abstain.

LambdaM OO Ballots 335

#82944
Aliases: 51%, 51, SilentMgjority, SM
Title: 519% OrltDoesn’tCount, 51%, 51, 51% Must Vote, SilentMgjority, SM
Author: Sunny (#58292)
Closed: July 20, 1995
Votes. 192 infavor, 419 opposed, and 191 abstaining.
Status: Defeated
This ballot proposed to nullify all (future) ballotsif at least 51% of all eligible
voters did not vote either “yes’ or “no”.

#68925
Aliases. Ch-Mail, ChMail, Change-Mail, C-M
Title: Change Mail - Trim DB
Author: Bats! (#91438)
Closed: July 20, 1995
Votes. 367 infavor, 155 opposed, and 207 abstaining.
Status: Implemented
This ballot changed the default mail option to forward MOOmail to aplayer’'s
registration email address instead of keeping it on the MOO (one could change this
back, manually, at any time). It also created the option of having MOOmail
automatically netforwarded before being deleted by the expiration task.

#55541
Aliases. BurnBanHomo, BBH
Title: BurnBanHomo

Author: CaRrOT (#47498)
Closed: August 21, 1995
Votes. 576 infavor, 226 opposed, and 295 abstaining.
Status: Implemented

This ballot called for * Petition:Ban.Homo.Trash (#57440) to be burned. If
#57440 had become a ballot, it was to be burned. If #57440 had passed, it was to be
rescinded. If #57440 was no longer a petition or a ballot, a new petition of the same
name was to be created and burned in effigy.

#11847
Aliases. Quota-Cap, Cap-Quota, qc
Title: Quota-Cap
Author: Profane (#30788)
Closed: September 5, 1995
Votes. 310 in favor, 186 opposed, and 382 abstaining.
Status: Defeated
This ballot sought to identify a maximum db size (that at which the MOO could
safely checkpoint), and place a variety of restrictions on new player creation and
quota allocation based on the difference between the established maximum size and
the actual size of the LambdaM OO database.

336 LambdaMOO Ballots

#74657
Aliases. MoreAliasesDammit
Title: More Aliases. Dammit.
Author: Quinn (#19845)
Closed: September 10, 1995
Votes. 240 in favor, 397 opposed, and 214 abstaining.
Status: Defeated
This ballot sought to raise the allowed number of player aliases to 50.

#9015
Aliases: Fix-QT, FixQT, Fix-Quota-Transferral
Title: Fix the Quota Transferral Feature
Author: Brack (#90845)
Closed: September 14, 1995
Votes: 361 in favor, 103 opposed, and 301 abstaining.
Status. Implemented

This ballot established a minimum quota transfer amount of 100 bytes, specified
that transfers smaller than 10K would be saved up and published collectively in a
single MOOmail post (to the public quota transfer log) rather than one post per
transfer, and limited to five the number of permitted consecutive transfers from a
single player.

#83438
Aliases: email
Title: Email From LambdaM OO
Author: Indite (#93055)
Closed: September 19, 1995
Votes. 338infavor, 268 opposed, and 243 abstaining.
Status: Defeated
This ballot stipulated that no email would be sent to a player’ s off-MOO email
address without that player’s express consent. Thiswould set the default of the
netforward mail option back to no. Playerswould also be prompted as part of the
process associated with @ egi st er re and @ equest .

#2927
Aliases. RR, Russian, RussianRoulette
Title: Russian Roulette

Author: Artbag (#91408)
Closed: November 10, 1995
Votes. 289 in favor, 788 opposed, and 202 abstaining.
Status: Defeated

This ballot specified that each day at approximately noon, a player would be
selected at random and newted for 24 hours, with an accompanying public spectacle.
System characters, playersineligible to vote, and players who signed the petition
would be exempt.

LambdaM OO Ballots 337

#95555
Aliases: LambdaMOO-Bill-of-Rights, LBOR, LBR, L-B-0-R,L_B_o0 R
Title: LambdaM OO Bill of Rights
Author: Mickey (#52413)
Closed: November 15, 1995
Votes. 379 in favor, 269 opposed, and 311 abstaining.
Status: Defeated
This ballot sought to define and establish a set of rights, “so fundamental to the
basis of our community as to supersede the effect of ssimple legislation.” The ballot
had five sections: “ Rights of Citizens’, “Rights of Wizards’, “Rights of the
ArchWizard”, “Definitions of Terms’ and “Extra’.

#96171
Aliases:. Quorum, Q
Title: Quorum

Author: Sunny (#58292)
Closed: November 21, 1995
Votes. 245infavor, 327 opposed, and 320 abstaining.
Status: Defeated

This ballot sought to identify and establish a quorum for passage of aballot. It
also specified procedures for notifying players reaching voting age of the existence of
the political system, specified the addition of certain help texts, away to designate
oneself as a non-participant in the political system, and called for scheduled election
periods for petitions that had accrued enough signatures to become ballots.

#55018
Aliases. No-bribery
Title: No bribing of signatories
Author: Hookleg (#78127)
Closed: November 25, 1995
Votes: 508 in favor, 140 opposed, and 260 abstaining.
Status: Implemented
This ballot prohibits any petition from calling for any change that resultsin
differential treatment between those who sign it and those who do not.

338 LambdaM OO Ballots

#12797
Aliases:. MooRights
Title: MooRights, MR
Author: Boonton (#76209)
Closed: December 6, 1995
Votes. 269 in favor, 337 opposed, and 336 abstaining.
Status: Defeated
This ballot sought to establish three basic rights:
. The Right not to be @ oaded or @ew ed against one’ s will.
. The right to free speech.
. The right to @ag or ignore people.
The ballot stipulated that in order to have a petition vetted which would violate
any of these rights, one would first have to pass a meta-petition obtaining permission
to author a petition which would violate these rights.

#33189
Aliases. ffqt, Fix-Fix-QT
Title: Fix Fix-QT
Author: darkrider (#7003)
Closed: December 21, 1995
Votes: 243 infavor, 194 opposed, and 450 abstaining.
Status: Defeated
This ballot sought to set the minimum quota transfer amount at 1 byte, and to
abolish in-M OO logging of quota transfers.

#74167
Aliases: A-->J, Arbitration-->Judgement, A->J, A>J, AJ
Title: Change Arbitration to Judgement
Author: Uther_Locksley (#93141)
Closed: December 28, 1995
Votes: 181 infavor, 275 opposed, and 403 abstaining.
Status: Defeated
This ballot sought to rename Arbitration to “ Judgement”, rename arbitrators to
judges, and rename peer reviewersto jurors.

#82371
Aliases. Remarklines.for.Petitions, RFP
Title: A Petition to Add Comment Linesto Petitions
Author: anj (#59447)
Closed: January 16, 1996
Votes. 282 infavor, 150 opposed, and 315 abstaining.
Status: Defeated
This ballot sought to add an option for one-per-player comments to petitions, in
addition to the regular posts to the petition mailing list.

LambdaM OO Ballots 339

#1036
Aliases. Read it before you sign it, read
Title: Read
Author: Avenger (#50204)
Closed: January 18, 1996
Votes. 448 infavor, 139 opposed, and 210 abstaining.
Status: Implemented
This ballot created the requirement (implemented as a technical change) that a
player read a petition or ballot before signing or voting on it. Exceptions were
specified for abstaining on a ballot and for ARB ballots and petitions.

#65449
Aliases. Elected-Judges, Elected Judges, EJ, E-J, E_J
Title: Elected Judges
Author: Mickey (#52413)
Closed: January 24, 1996
Votes. 185in favor, 221 opposed, and 264 abstaining.
Status: Defeated

This ballot proposed replacing the Arbitration system with a court system
involving nine elected judges. The text of the ballot includes provision for amailing
list, defines the judges' charter, addresses process, voting, and judges’ powers,
discusses judges going on vacation, and has sections about appeal's, parties to a case,
privacy, elections, re-election, impeachment, and the transition from Arbitration to
the proposed new system.

#4579
Aliases. @snuff
Title: Allowing for Player to Player Booting
Author: Mack-the-Knife (#47551)
Closed: January 26, 1996
Votes: 261 infavor, 316 opposed, and 167 abstaining.
Status: Defeated
This ballot described and proposed a voluntary and participatory system by
which players who opted in would be able to boot one another for a period of three
hours.

#A715
Aliases: validity
Title: Petition System Referendum
Author: HumbertHumbert (#64152)
Closed: January 28, 1996
Votes: 280 in favor, 106 opposed, and 229 abstaining.
Status: Implemented
This ballot was a referendum on whether or not the citizens of LambdaM OO
accepted the validity of the petition system (which was imposed by Haakon after
LTAND).

340 LambdaMOO Ballots

#103918
Aliases. SOS
Title: SaveOurSunny
Author: WriTinG (#73920)
Closed: January 29, 1996
Votes. 160 in favor, 323 opposed, and 224 abstaining.
Status: Defeated
This ballot proposed granting reaper protection to the LambdaM OO character
known as Sunny (#58292).

#58647
Aliases. AOL, AmericaOnLudes
Title: America On Ludes
Author: Gilmore (#34435)
Closed: January 30, 1996
Votes. 222 infavor, 350 opposed, and 177 abstaining.
Status: Defeated
This ballot proposed denying future character requests to persons with an email
address ending in “aol.com” and denying access to characters and guests from the
“aol.com” domain.

#5360

Aliases. Readable

Title: Create Objects with +r (Readable) Flag

Author: Griffen (#93228)

Closed: February 1, 1996

Votes. 305 in favor, 144 opposed, and 213 abstaining.
Status: Implemented

This ballot caused all newly-created objects to be readable (+r) by default.

#63854
Aliases. 7AT77
Title: The 7's have it!
Author: P7A77 (#53430)
Closed: February 5, 1996
Votes. 107 in favor, 492 opposed, and 209 abstaining.
Status: Defeated
This ballot proposed that all objects that are not primary characters and whose
object number is of the form ‘#x7y77’, where X isadigit between 1-9 and y isadigit
between 0-9, would have their ownership transferred, without regard to quota limits,
to the ballot’ s author.

LambdaM OO Ballots 341

#80591
Aliases: Proxies, Proxy
Title: Voting Proxies
Author: jaime (#35330)
Closed: February 17, 1996
Votes. 272infavor, 334 opposed, and 293 abstaining.
Status: Defeated
This ballot proposed a system by which an eligible voter would be able to
authorize another eligible voter to vote on eir behalf by proxy.

#57800
Aliases: BirthControl, Eugenics, PopulationCap, Cap, qc2,
CondomsForY ouAndY ours

Title: BirthControl
Author: Profane (#30788)
Closed: February 23, 1996
Votes. 475 in favor, 229 opposed, and 241 abstaining.
Status: Implemented

This ballot created a maximum database size limit of 200,000,000 bytes, and
Sttwi pulates that no new characters may be created when the database is larger than
that size.

#14923
Aliases. Junkmail, IM
Title: Expiring usel ess messages, which waste space.
Author: abstract (#94368)
Closed: February 28, 1996
Votes. 671 infavor, 32 opposed, and 186 abstaining.
Status: Implemented
This ballot called for the MOOmail lists*Boot - | og and *W t ness- publ i shed-

| ogs to have their expire times set to six months. Messages older than that are to be
deleted.

#63062

Aliases: Comments, DisputeComments, DC

Title: A Change to the Method of Commenting on Disputes
Author: QUARTIow (#87310)

Closed: March 10, 1996

Votes: 237 infavor, 125 opposed, and 400 abstaining.

Status: Defeated

This ballot sought to limit who could post to dispute mailings lists, when they
could do so, and the size of the posts that would be permitted.

342 LambdaM OO Ballots

#15592

Aliases. AddNotice, ANFR

Title: Add a Notice for Researchers to the Welcome Screen

Author: Peri (#86631)

Closed: March 25, 1996

Votes. 573 infavor, 93 opposed, and 215 abstaining.

Status: Implemented

This ballot called for the following text to be added to the LambdaM OO

welcome screen:

NOTI CE FOR JOURNALI STS AND RESEARCHERS:

The citizens of LanmbdaMXO request that you ask for perm ssion from
all direct participants before quoting any nmateri al
coll ected here.

#3568
Aliases. InheritFastFO, iffo, inherit
Title: New Players Inherit Fast Lag Reduction FO
Author: Kilik (#2819)
Closed: April 5,1996
Votes. 568 in favor, 77 opposed, and 197 abstaining.
Status: Implemented
This ballot stipulates that new players shall be born with the lag reduction
feature object #26787 (Lag Reduction FO of Godlike Powers) as afeature, and it shall
be active.

#64597
Aliases: AprilFools!, AF, Fools
Title: April Fools!
Author: jaime (#35330)
Closed: April 9, 1996
Votes. 575infavor, 123 opposed, and 176 abstaining.
Status: Implemented
This ballot authorizes the wizards to do just about anything (some restrictions
apply) whenever the date is April 1 anywhere in the world, and that they may not be
disputed for doing so.

#99623
Aliases: Guest-accountability, GA
Title: Eliminating Anonymous Hate Mail
Author: Hibernian (#63402)
Closed: April 15, 1996
Votes. 405 in favor, 207 opposed, and 155 abstaining.
Status: Defeated
This ballot sought to authorize the release of guest site info to arbitrators in cases
where guests were disputed.

LambdaM OO Ballots 343

#88247
Aliases. 51%_ Magjority, 51%M
Title: Ballots Need 51% To Pass
Author: GothGrrl (#96823)
Closed: April 15, 1996
Votes. 247 infavor, 332 opposed, and 165 abstaining.
Status: Defeated
This ballot proposed that future ballots require 51% or more of the total Yes + No
votes cast in order to pass, instead of the then-current threshold, which required at
least twice as many Y es votes as No votes.

#70377
Aliases. FBC, FixBirthControl
Title: Fix *B:BirthControl
Author: Sleeper (#98232)
Closed: April 15, 1996
Votes. 411 infavor, 102 opposed, and 207 abstaining.
Status: Implemented
This ballot mandated that on days when the database size is above the
established maximum size limit, slots created by reaped players would be discarded,
not saved up for the next time the database fell below the maximum established size
limit.

#54235
Aliases: New_Reaping, New-Reaping, N-R, N_R
Title: A New Reaping System
Author: Uther_Locksley (#93141)
Closed: April 15, 1996
Votes. 265 infavor, 237 opposed, and 216 abstaining.
Status: Defeated

This ballot proposed some changes to the reaping process: Players would be able
to make wills, indicating how they would like their objects distributed or disposed of.
A pool of volunteer reapers would be created. These reapers would be elected. The
ballot also stipulated that minor changes could be made to the reaping system viaa
mechanism similar to the arbitration change system.

#7690
Aliases. MoreJunkmail, MIM
Title: More Junkmail

Author: abstract (#94368)
Closed: May 5, 1996
Votes: 557 infavor, 32 opposed, and 207 abstaining.
Status: Implemented
This ballot specified time limits after which unpublished witness logs shall be
deleted, and that unpublished guest logs shall be deleted when the guest 1ogs off.

344 LambdaM OO Ballots

#97004
Aliases. Court2, JRB2, JURB2
Title: Judicial Review Board, Revisited
Author: Rat (#50816)
Closed: May 14, 1996
Votes. 311linfavor, 170 opposed, and 316 abstaining.
Status: Defeated
Thisballot called for the proposal specified in *B:Court (see above, #54577) to be
implemented.

#63904
Aliases. Guest_Accountability-2
Title: Eliminating Anonymous Hate Mail
Author: Hibernian (#63402)
Closed: June 12, 1996
Votes. 452 infavor, 177 opposed, and 210 abstaining.
Status: Implemented

This ballot added a second login screen that guests see when logging in,
informing them that their site information may be used in the event of a dispute and
that continuing the login process implied consent to its use in this manner. Guests
would then be presented with a yes/no prompt asking whether they accepted these
terms. The connection would be severed at that point if the guest answered ‘no’. The
ballot also called for various help texts to be modified to reflect these changes.

#105876
Aliases: NoGeeks
Title: NoGeeks
Author: Vida Blue (#84906)
Closed: June 23, 1996
Votes: 192 in favor, 676 opposed, and 147 abstaining.
Status: Defeated
This ballot sought to have added to the text of hel p manner s an additional
paragraph detailing specific topics of conversation that were to be designated as
unmannerly and offensive to players sensibilities.

#104668
Aliases: Lay_ Registrar, LR
Title: Lay Registrars to take some pressure away from the LambdaM OO Wizards.
Author: Darkson (#100806)
Closed: Thursday, June 27, 1996
Votes. 415 infavor, 193 opposed, and 194 abstaining.
Status. Implemented

This ballot created the el ected position of lay registrar. These non-wizard
registrars would have access to players’ email addresses and to certain commands that
used wizard powers. They would assist the wizards with the task of creating new

players.

LambdaM OO Ballots 345

#98598
Aliases: Adult_Swim, AdIitSwm, AdultSwim, Adult-Swim
Title: Wednesday is for oldbies
Author: carrOt (#47498)
Closed: July 2, 1996
Votes. 491 infavor, 302 opposed, and 134 abstaining.
Status: Defeated
This ballot proposed that each Wednesday between 00:00:00 LST and 23:59:59
LST, only non-guest players who were either older than 90-days or older than this
ballot would be allowed to connect.

#82382
Aliases: Repeal-Arbitration, Rep, RARB
Title: Repeal Arbitration
Author: notabird (#105807)
Closed: July 5, 1996
Votes. 212 infavor, 244 opposed, and 232 abstaining.
Status: Defeated
Thisballot called for the repeal of *B:Arbitration, including the recycling of all
dispute objects and the disabling of arbitration-related verbs.

#98087
Aliases. MailingListReform, Mailing_List Reform, mir
Title: Mailing List Reform
Author: Profane (#30788)
Closed: July 10, 1996
Votes. 385 infavor, 66 opposed, and 172 abstaining.
Status: Implemented

This ballot established 30 days as the default expire time on all mailing lists,
established a maximum expire time of 180 days for non-wizard-owned lists, and
made provision for mailing lists to be registered to an email address -- expired
messages are sent to that email address (if present) before being deleted from the
system.

#62048
Aliases:. No_Programmatic_Conflicts, NPC, No-Programmatic-Conflicts,
NoProgrammaticConflicts, N_P_C, N-P-C
Title: No Programmatic Conflicts of Interest
Author: Edweirdo (#58468)
Closed: July 17, 1996
Votes: 239 infavor, 72 opposed, and 251 abstaining.
Status. Implemented
This ballot eliminated any programmatic determination of a conflict of interest
between various parties to a dispute.

346 LambdaMOO Ballots

#94350
Aliases;
Title:
Author:
Closed:
Votes.
Status:

Random-Fixes, rf

Mostly Harmless

Stetson (#65101)

July 22, 1996

388 in favor, 45 opposed, and 182 abstaining.
Implementation begun

Thisballot called for a set of minor changes.

#77883
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Secondary characters reading a petition would * count’ for purposes of
*B:Read. If asecondary character signs the petition, it isthe primary’s

character whose name will actually appear.

Arbitration change proposals have to be read before signing, as for petitions.
The ballot modifies the implementation of * B:Read so that other ways of
reading besides typing the actual ‘read’ command are accepted as
substitutes.

Thislist of those who have read a petition will no longer be public.

Players will be provided with the option of typing a one-line command to
connect either in the linen closet or the coat closet, rather than having to
answer ‘noisy’ or ‘quiet’.

ggg{.le%ished guest witness logs will be saved for 24 hours before being

A list would be created for information about arbitration proposals newly
up for voting, and about arbitration change proposals which have passed or
failed.

VOAB, Vote on_ALL_barring

Voteon ALL barring

New-Player-11164 (#105699)

August 1, 1996

215 in favor, 90 opposed, and 282 abstaining.
Implemented

This ballot addressed inequities in the way arbitrators had been barred between
an old system and a newer one instituted by arbitration change proposals.

LambdaM OO Ballots 347

#80483
Aliases: Undertakers and_Executors - Elected, U& EE, UEE, New_Reaping_2, n_r2,
n-r2

Title: Elected Undertakers and Executors
Author: Peri (#86631)
Closed: August 5, 1996
Votes: 287 in favor, 105 opposed, and 186 abstaining.
Status: Implemented

This ballot created the elected office of reapers. Reapers would be enabled,
through a set of special commands, to disburse a soon-to-be-reaped player’ s objects,
and to reap players. All playerswould be given acommand @i | | with which to
designate ways they would like their objects to be disposed of. Minor changes were
specified, and the ballot included a provision for making minor changes without the
requirement of a petition.

#13125
Aliases: ArbiChange, Arbitration_Change Proposals, AC, ACP
Title: Update and validate ArbiChange
Author: Uther_Locksley (#93141)
Closed: August 13, 1996
Votes. 139 infavor, 91 opposed, and 319 abstaining.
Status: Defeated
This ballot proposed to change some of the procedures for arbitration change
proposals, and gave a specific list of those things which might be changed viathat
mechanism.

#82908
Aliases. NDD
Title: No Digjoint Disputes
Author: Cable (#50066)
Closed: August 21, 1996
Votes. 228 infavor, 74 opposed, and 273 abstaining.
Status: Implemented
This ballot provided away for multiple disputes between the same pair of players
t(()elbeegismissed, if the disputes were deemed by the selected arbitrator to be “closely
related” .

#8926
Aliases: Kill_Lag, KL
Title: Kill The Lag
Author: Tunalesus (#86562)
Closed: August 23, 1996
Votes. 405 infavor, 161 opposed, and 140 abstaining.
Status: Implemented
Thisballot called for the mailing list *soci al - i ssues to be ceremoniously
recycled.

348 LambdaM OO Ballots

#3665
Aliases;
Title:
Author:
Closed:
Votes.
Status:

FreelL ove, RepealBirthControl, RBC, !BirthControl
Repeal *B:BirthControl

Profane (#30788)

August 24, 1996

273 in favor, 217 opposed, and 155 abstaining.
Defeated

This ballot called for the repeal and reversal of * B:BirthControl (#57800) and
*B:FBC (#70377).

#78880
Aliases:
Title:
Author:
Closed:
Votes:
Status:

ctr, Change _The Rules, rules

Change the @boot age.

psign_*p:ctr (#96823)

September 17, 1996

400 in favor, 317 opposed, and 141 abstaining.
Defeated

This ballot proposed raising to 16 months the age at which one would be eligible
to @oot guests.

#90702
Aliases:
Title:
Author:
Closed:
Votes:
Status:

LTAD, LTAD_Consent, LTAD-Consent, Consent, Confidence_Motion
Consent by the population to message 300 on * News

Li2CO3 (#79261)

September 29, 1996

321 in favor, 111 opposed, and 272 abstaining.

Implemented

_ Thisballot called for the text of LTAD (LambdaM OO Takes Another Direction) to
be incorporated into help text and the history section of the museum. It furthermore

established:

The LTAD declaration islegal.
The population has shown its confidence in the Wizards.
The population has shown its consent to LTAD.

LambdaM OO Ballots 349

mailto:@boot

#60159
Aliases. apolitical, ap, apol
Title: A Standard Way to Declare Y ourself Apolitical
Author: Brack (#90845)
Closed: September 30, 1996
Votes. 415infavor, 71 opposed, and 183 abstaining.
Status: Implemented

This ballot mandated a standard way to declare oneself to be apolitical.
Apolitical players still have the right to author and sign petitions and vote on ballots.
Declaring oneself to be apolitical is an indication that one does not wish to be lobbied
about any pending petitions or ballots.

This ballot was implemented to utilize the syntax of the @ ef use command.
Further information isavailablein hel p apolitical.

#15184
Aliases: RLR
Title: Repeal the Lay Registrars Ballot
Author: QUARTIow (#87310)
Closed: October 18, 1996
Votes: 245infavor, 193 opposed, and 260 abstaining.
Status: Defeated
This ballot sought to repeal the ballot which created lay registrars (#104668), and
guarantee that no site information would be available to any non-wizard character.

#80213
Aliases; ARBstandards, AS, ARBs
Title: Provide minimum standards for ARB members

Author: Mooshie (#106469)
Closed: November 1, 1996
Votes: 294 infavor, 145 opposed, and 262 abstaining.
Status: Implementation begun

This ballot provides a minimum standard of time/effort expected from members
of the Architecture Review Board. That standard isto cast a vote (yes/no/abstain) on
at least 40% of the applications that come before the board during a member’ s term,
and to cast an influencing vote (yes or no) on at least 20% of the applications that
come before the board during a member’ s term, with a check half-way through a
member’ s term (six months after being elected). A member who does not meet these
standards may not run for re-election the following term.

350 LambdaMOO Ballots

#27007
Aliases. ResponsibleARB, GoodARB, GARB
Title: Standards of Behavior for Architecture Review Board Members
Author: Profane (#30788)
Closed: December 5, 1996
Votes. 319 in favor, 123 opposed, and 287 abstaining.
Status: Implementation begun
This ballot established that a person must be a programmer to serve on the
Architecture Review Board (ARB), and will be removed from the ARB if eir

Programmer bit isremoved either by fiat or arbitration, or if eis @ewt ed either by
iat or by arbitration.

#91597
Aliases. TLD, Time Limit_for_Disputes
Title: Time Limit for Disputes
Author: Shalmaneser (#105194)
Closed: December 13, 1996
Votes: 324 infavor, 71 opposed, and 263 abstaining.
Status: Implemented
The ballot set a general time limit for disputes at 90 days. Disputes older than
that would be closed automatically, with aresult of “No Action”.

#2866
Aliases: VotingOptions
Title: V otingOption
Author: Farcan (#108472)
Closed: December 21, 1996
Votes. 205 in favor, 287 opposed, and 194 abstaining.
Status: Defeated
This ballot sought to create a voter registration system. Voterswould be able to
register and unregister at will. Unregistered voters would not be able to author or
sign petitions or vote on ballots. It also stipulated that * Ballot: Apolitical would be
repealed.

#55186
Aliases: NLR, NoLayRegistrars, PORA
Title: Protect Our Registered Addresses, No Lay Registrars
Author: Sunny (#58292)
Closed: January 10, 1997
Votes. 311 infavor, 227 opposed, and 153 abstaining.
Status: Defeated
This ballot sought to rescind * B:LayRegistrars.

LambdaM OO Ballots 351

#92378
Aliases: Kill_More Lag, KML
Title: Kill More Lag
Author: RedFeather (#91419)
Closed: January 16, 1997
Votes. 339 infavor, 141 opposed, and 130 abstaining.
Status: Implemented
This ballot stipulates that when the owner of amail recpient (e.g. a*list) ismore
than 50K over quota, new mail may not be sent to that mail recipient. (The text of
this ballot is arranged in a particularly humorous format.)

#60398
Aliasess. RNCQ
Title: Reduce New Character Quota
Author: Pictwe (#70967)
Closed: January 16, 1997
Votes. 226 infavor, 256 opposed, and 114 abstaining.
Status: Defeated
This ballot proposed reducing the default quota given to new characters to
30,000 bytes (from 50,000).

#50993
Aliases. Fix-Boot-3.14, FixBoot3.14, FixBootlll, Fix-Boot-
3.14159265358979323846264
Title: Fix @boot Yet Again
Author: Quiet (#90845)
Closed: January 29, 1997
Votes. 329 in favor, 129 opposed, and 199 abstaining.
Status: Implemented
This ballot provides for a graduated way to block access from an entire domain
(rather than just a single site) if a recently-booted guest returns from a similar-but-
dightly-different site (e.g. adifferent terminal in a school’s computer lab).

#90908
Aliases: AmendShutdown
Title: Amendments to Shutdown
Author: Hookleg (#78127)
Closed: March 9, 1997
Votes. 335infavor, 153 opposed, and 209 abstaining.
Status: Implemented
Thisballot calls for email to be sent to each player’ s registration email addressin
the event that the shutdown ballot passes, informing players of the date of the
shutdown and allowing them to retrieve any information they wish.

352 LambdaM OO Ballots

mailto:@boot

It furthermore stipulates that should the shutdown ballot ever pass, the first
signatory of that ballot shall have eir home set to a set of stocksin the living room
(#17) and that “facilities shall be made available to allow the public to express their
displeasure in the customary fashion, i.e., throwing rotten fruit/eggs at the subject,
drawing silly moustaches on his’her face etc.”

#99036
Aliases. Reduce the Database, rdb
Title: Deleting Old Disputes
Author: loree (#59292)
Closed: March 10, 1997
Votes. 453 infavor, 68 opposed, and 156 abstaining.
Status: Implemented
This ballot calls for the deletion of all disputes that closed more than 120 days
prior to passage of this measure. (Old disputes are archived at
ftp://ftp.lambda.moo.mud.org/pub/M OO/lambda/disputes/.)

#100000
Aliases. Shutdown
Title: Shutdown
Author: #4 (Petitioner)
Closed: March 24, 1997
Votes. 95infavor, 1406 opposed, and 68 abstaining.
Status: Defeated
This ballot specifies that LambdaM OO will be permanently shut down 8 weeks
after passage. (Thisisaspecial ballot created as part of the policy statement known as
“LambdaM OO Takes Ancther Direction” (LTAD) and requires only a simple majority

topass. Seealsohel p LTAD.)

#7606
Aliases. Vacations, V
Title: V acations and Reaping
Author: Uther_O’Locksley (#93141)
Closed: March 30, 1997
Votes. 381 infavor, 300 opposed, and 167 abstaining.
Status: Defeated
This ballot proposed reaping players after two months (61 days) of inactivity, but
providing players with a mechanism to declare themselves to be “on vacation”,
which, if set, would extend the reaping period to six months.

LambdaM OO Ballots 353

#36324
Aliases;
Title:
Author:
Closed:
Votes.
Status:

define-minor-2

define-minor-2

Cable (#50066)

April 14, 1997

249 in favor, 85 opposed, and 391 abstaining.
Implemented

This ballot provided aformal definition of “minor change” for purposes of
determining which things could be changed via the Arbitration Change mechanism.
Other, “non-minor” changes could only be made through the petition/ballot process.

#73786
Aliases:
Title:

Author:
Closed:
Votes:
Status:

ReapWarning

Send message to registered email addresses of inactive players to inform
them of their possible reaping.

Darkson (#100806)

May 16, 1997

638 in favor, 148 opposed, and 122 abstaining.

Implemented

This ballot provides for email to be sent to inactive players more than one year
old, warning them of their potential reaping if they remain inactive.

#8109
Aliases:
Title:
Author:
Closed:
Votes.
Status:

Recourse

Lay Registrars are Accountable

JohnBoy (#85460)

June 3, 1997

427 in favor, 103 opposed, and 198 abstaining.
Implemented

This ballot stipulates that alog will be kept of lay registrars’ accessto players
email addresses, that lay registrars will be prompted to provide a reason for such
access, and that a copy of the access record will be mailed to the player whose
information is accessed.

354 LambdaM OO Ballots

#7865
Aliases;
Title:
Author:
Closed:
Votes.
Status:

Amend-Petition-Process, Amend_Petition_Process, APP, A-P-P, A_P_P, A-PP
Amend the Petition Process

M ooshie (#106469)

June 14, 1997

172 in favor, 126 opposed, and 285 abstaining.

Defeated

This ballot proposed the following changes to the petition process:

Petition authors would have more flexibility in when to submit a petition
for vetting, rather than only when ten signatures have been acquired.
Petitions may acquire signatures while awaiting vetting.

Petitions have a 90-day expiration period after the most recent edit;
petitions do not age while awaiting vetting.

Petition authors would be provided with away to disapprove/protest a
petition’ s implementation notes, and to resubmit the petition for vetting
and revision of the implementation notes. The author must approve the
implementation notes before a petition can be promoted to a ballot.

Resubmitting a petition for vettin% would not erase signatures on the
petition. A maximum of two resubmissions would be allowed.

#77822
Aliases:. WholeGag, wg
Title: Gag The Whole Site
Author: MugWump (#89069)
Closed: June 24, 1997
Votes. 437 infavor, 220 opposed, and 135 abstaining.
Status: Defeated
Thisballot called for away to @ag aplayer and any guests connecting from that
player’s site.
#92524
Aliases. nowhere-cleanup
Title: Clean up nowhere
Author: Xia (#95203)
Closed: June 27, 1997
Votes:. 493 in favor, 88 opposed, and 136 abstaining.
Status. Implemented

Thisballot called for the recycling of old ARB and reaper €election petitions and

ballots.

LambdaM OO Ballots 355

#82107
Aliases. MP, Mediation Period
Title: A Mediation Period for Disputes
Author: Shalmaneser (#105194)
Closed: June 29, 1997
Votes. 228 infavor, 123 opposed, and 306 abstaining.
Status: Defeated
This ballot proposed extending the default duration of a dispute from two weeks
to three weeks, and declaring the first week as a“mediation period” during which
only the mediator, parties to the dispute, and formally interested parties would be
permitted to post to the dispute mailing list.

#9954
Aliases: Social_Security, Soc, Sec, SS
Title: Social Security
Author: Scarab (#33633)
Closed: July 2, 1997
Votes: 589 in favor, 94 opposed, and 107 abstaining.
Status: Implemented
This ballot increased the reaping period from four months to four months plus
one month per year of MOO age up to a maximum of one year.

#88116
Aliases: Toad-007
Title: @Toad Bond-007
Author: ZenWombat (#90331)
Closed: July 27, 1997
Votes. 325infavor, 241 opposed, and 357 abstaining.
Status: Defeated
This ballot proposed that the character then known as Bond-007 (#103634) and

all registered secondary characters be @ oaded, and that no new characters be created
or registered to that player’s current email address(es).

#11775
Aliases: FinishFinishedDisputes, FFD
Title: Close Mailing Lists of Finished Disputes
Author: Nuveena (#86941)
Closed: August 25, 1997
Votes. 469 in favor, 44 opposed, and 166 abstaining.
Status: Implemented
This ballot stipulates that non-wizard players may no longer send messagesto a
dispute mailing list once a dispute has been either closed or withdrawn.

356 LambdaMOO Ballots

#86750
Aliases: MOOicide Reform, mr, tnataard
Title: MOOicide Reform, or There' s Nothing as Tedious as a Reformed Drunk
Author: TMFKANG64 (#110825)
Closed: August 26, 1997
Votes. 344 infavor, 143 opposed, and 210 abstaining.
Status: Implemented

This ballot changed the behavior of the LambdaM OO location known as“The
Edge of the World” so that instead of @ ecycl i ng a character, it would @ewt em for
one month less than the current reap period. Jumping off the edge would no longer
require recycling all on€' s possessions or renaming oneself to “Toad<n>". Players
who are eventually reaped after having jumped off the edge of the world and who
subsequently wish to return may do so without special registrar intervention, just as
if they had been reaped due to inactivity.

#52691
Aliases. UnlimitAliases, infinalias
Title: Revise Limits on Number of Player Aliases

Author: Quinn (#19845)
Closed: August 31, 1997
Votes: 219 in favor, 351 opposed, and 160 abstaining.
Status: Defeated
This ballot proposed that players be permitted to have as many aliases as their
quota allows.

#60137
Aliases. ReaperPolicy, ReapPolicy, RPol, RP
Title: Establish a Policy for Reapers
Author: Peri (#86631)
Closed: September 4, 1997
Votes: 293 in favor, 80 opposed, and 257 abstaining.
Status. Implemented
This ballot established a set of guidelines that Reapers are expected to follow,
including:
. aset of ethical guidelines for Reapers
. rules and guidelines for Reaper duties
. requiring active Reapers to read and consent to it
. defining some common terms, to pave the way for better and more
thorough help files about Reapers
. allowing changes to the above by Reaper change proposals.

LambdaM OO Ballots 357

#66322
Aliases: Disallow @toading_Petitions, dtp
Title: Disallow @toading Petitions
Author: Ox (#54875)
Closed: September 15, 1997
Votes. 259 in favor, 231 opposed, and 229 abstaining.
Status: Defeated
This ballot sought to disallow petitions which called for the @toading of an
individual player.

#14802
Aliases. Fewer_ Reapers by Attrition, Fewer Reapers, Attrit Reapers, fr
Title: Reduce Reapers by Attrition
Author: Peri (#86631)
Closed: November 1, 1997
Votes. 365 in favor, 86 opposed, and 197 abstaining.
Status: Implemented
This ballot reduced the number of elected reapers by reducing from six to three
the number of reaper positions available in each of the two reaper elections that
feIOI lowed, and stipulating that only three reapers would be elected in all subsequent
ections.

#5810
Aliases. COI
Title: Conflict of Interest
Author: Johns (#110288)
Closed: November 4, 1997
Votes. 433 infavor, 94 opposed, and 167 abstaining.
Status: Implemented

This ballot prevents any person holding an elected or appointed office and
involved in a dispute with someone from acting in eir official capacity with respect to
the person with whom eisinvolved in adispute. Official actions of a neutral nature
(such as abstentions) are not affected. Examples of elected or appointed offices would
be ARB Member, Lay-Registrar, or Reaper.

#84994
Aliases:. OPC
Title: One_Per_Customer, OPC
Author: pens (#84567)
Closed: November 5, 1997
Votes: 365 infavor, 157 opposed, and 170 abstaining.
Status. Implemented
This ballot stipulates that no player may hold more than one el ected position at
atime.

358 LambdaMOO Ballots

mailto:Disallow_@toading_Petitions
mailto:@toading
mailto:@toading

#87693
Aliases. EvilEdge
Title: GilEvilEdge
Author: Evil (#64052)
Closed: November 6, 1997
Votes. 222 infavor, 265 opposed, and 217 abstaining.
Status: Defeated
This ballot proposed to permit the players Evil (#64052) and Gilmore (#34435) to
set their homes to West Lambda Street (#40309). (West Lambda Street is also known
as the Edge of the World.)

#79608
Aliases: Truckloads O Justice, toj, First Refusal
Title: Give Gilmore First Refusal on Disputes
Author: TMFKANG64 (#110825)
Closed: November 13, 1997
Votes. 148 infavor, 367 opposed, and 167 abstaining.
Status: Defeated
This ballot proposed making Gilmore (#34435) the default arbitrator in any new
disputes which did not involve him directly. If Gilmore were to choose not to
arbitrate any particular dispute, then the regular mechanism for selecting an
arbitrator would take effect.

#2107
Aliases: Repea_Kill_More Lag, rkml
Title: Repeal *B:Kill_More Lag
Author: MutantNemesis (#87103)
Closed: November 13, 1997
Votes. 239 in favor, 194 opposed, and 205 abstaining.
Status: Defeated
This ballot sought to repeal *B:Kill_More_L ag, and remove the restriction on
sending mail to alist when its owner is more than 50K over quota.

#35404
Aliases:. New-Wizards, NW, new
Title: A New Wizard Each Y ear (Whether We Need One Or Not)
Author: Yib (#58337)
Closed: November 14, 1997
Votes. 243 infavor, 278 opposed, and 153 abstaining.
Status: Defeated
This ballot sought to inject new blood into the wizardry by formally requesting
that Haakon add one new wizard per year whether or not more manpower was
actually needed to reduce the wizards' work |oad.

LambdaM OO Ballots 359

#H77751
Aliases:. ropc, Repeal-OPC
Title: Re-allow players to hold more than one elected office at atime
Author: Darkson (#100806)
Closed: November 29, 1997
Votes. 196 in favor, 322 opposed, and 200 abstaining.
Status: Defeated
~ Thisballot sought to re-allow players to hold more than one elected position at a
time.

#102897
Aliases: toad-nonsenso, toad nonsenso
Title: Toad nonsenso!

Author: Fuel (#59658)
Closed: December 4, 1997
Votes. 244 infavor, 214 opposed, and 301 abstaining.
Status: Defeated
This ballot sought to toad the player nonsenso (#112743) and any of his known
secondary characters. It also called for the blacklisting of his site.

#3856
Aliases: Hush
Title: Hush

Author: Gary (#110811)
Closed: December 8, 1997
Votes: 352 in favor, 246 opposed, and 188 abstaining.
Status: Defeated

This ballot sought to restrict players to sending only one post per midnight-to-
midnight day to petition and ballot mailing lists and limit the length of said posts to
2000 characters or fewer.

#58025
Aliases: BringBackGilmore, BBG
Title: UnNewt Gilmore

Author: Peri (#86631)
Closed: December 9, 1997
Votes: 285 in favor, 329 opposed, and 222 abstaining.
Status: Defeated

This ballot sought to denewt the player Gilmore (#34435). (He was a newt at the
time by virtue of having walked off the Edge of the World. Hisrequest to be
denewted had been declined by the wizards in accordance with
*B:MOOicide_Reform.)

360 LambdaMOO Ballots

#22540
Aliases; Append_Site Information_To_Guest_Descriptions, info
Title: Append Site Information to Guest Descriptions
Author: Jayturkey (#105276)
Closed: December 21, 1997
Votes. 341 infavor, 351 opposed, and 111 abstaining.
Status: Defeated
This ballot proposed to append guests connection site information to their
descriptions.

#81155
Aliases:. Reconcile MR_and_SS, reconcile, Down_with_Ambiguity!, dwa
Title: Reconcile *B:MOOQicide_Reform and *B:Social_Security
Author: Drippy (#109564)
Closed: December 23, 1997
Votes. 332 infavor, 82 opposed, and 229 abstaining.
Status: Still to do
*B:Social_Security increased a player’ s reap time to the base reap time of four
months plus one month per year of MOO age. *B:MOOQOicide_Reform mandated that
jumping off the Edge of the World would newt a person for “one month less than the
reap time’. This ballot specifies that in the event of MOQicide, the player will be

newted for three months and reaped after four monthsif e does not subsequently log
in.

#14067
Aliases: til, marred
Title: Truthin Lending
Author: O.M.I.N. (#97582)
Closed: January 7, 1998
Votes: 342 infavor, 80 opposed, and 203 abstai ning.
Status: Implemented
Thisballot stipulates that if aplayer is @ oaded, the person who did the deed
shall be identified on the * obi t s mailing list, and that if a player MOQicides, that
}/_vsiil be noted as such (rather than as “reaped”, as per *B:MR) on the * obi t s mailing
ist.

#15810
Aliasess. NewMOOicideReform, NMR
Title: NewM ooicideReform
Author: Fred astaire (#112705)
Closed: January 10, 1998
Votes. 205 infavor, 210 opposed, and 175 abstaining.
Status: Defeated
This ballot called for the abolishment of the M OQicide mechanism all together,
and stipulated that a player wishing to leave LambdaM OO shall refrain from
connecting until eir character is reaped.

LambdaM OO Ballots 361

#91413
Aliases: bbc, BringBackChoppie
Title: Bring Back Choppie!
Author: Quadric (#105557)
Closed: January 26, 1998
Votes. 235infavor, 312 opposed, and 274 abstaining.
Status: Defeated
This ballot requested the denewting of the character Choppie! (#110208), who
had M OQicided and subsequently had a change of heart.

#71956
Aliases. Rescind_Arbitration, RAR
Title: Rescind Arbitration
Author: Jaybird (#105276)
Closed: February 12, 1998
Votes. 293 infavor, 153 opposed, and 273 abstaining.
Status: Defeated
Thisballot called for the repeal of *B:Arbitration, and the undoing of any
modifications made to the Arbitration system after its passage as a ballot.

#22772

Aliases: Never_Say Never, never

Title: Never Say Never!

Author: Tapu (#98332)

Closed: March 3, 1998

Votes: 210 in favor, 213 opposed, and 287 abstaining.
Status: Defeated

This ballot specified a process by which an arbitrator who had been barred from
arbitrating could apply for reinstatement.

#103954
Aliases: ISV, InnoucousShutdownV otes
Title: Shutdown votes shouldn’t affect petition process

Author: Sleeper (#98232)
Closed: March 10, 1998
Votes. 209 in favor, 86 opposed, and 308 abstaining.
Status: Implemented

This ballot stipulates that votes cast on past and future Shutdown ballots (those
involving object #100000) shall not affect the number of signatures required to
convert petitionsinto ballots.

362 LambdaMOO Ballots

#65664
Aliases;. CCS
Title: Change Checkpoint Schedule
Author: Selma (#109388)
Closed: March 16, 1998
Votes. 295 in favor, 227 opposed, and 145 abstaining.
Status: Defeated
This ballot sought to change the time interval between automated checkpoints
from 24 hours to 23 hours so that it would occur at adifferent time each day.
(System lag increases dramatically during the checkpoint process.)

#95714
Aliases. More Free Mailing, MFM
Title: FreeMailing,MassMailing
Author: QUARTIow (#87310)
Closed: March 19, 1998
Votes. 216 infavor, 165 opposed, and 220 abstaining.
Status: Defeated
This ballot proposed that the owners of “public use” mailing lists be permitted to
set alist’s expire period to 72 hours or less, and that those so doing be exempted from
the restrictions specified by *B:Kill _More Lag (i.e. that if the owner is more than 50K
over quota, new messages to that list will not be accepted).

#61372
Aliases: Bring_Back_the Blender, BBB
Title: Bring Back the Blender: MOOQicide with a sharper edge
Author: Holgate (#65396)
Closed: March 24, 1998
Votes. 335in favor, 155 opposed, and 162 abstaining.
Status: Implementation begun
This ballot called for the restoration of the original, permanent method of
MOOQiciding by climbing into the Cuisinart in the LambdaM OO kitchen and turning
it on. It furthermore called for the Edge of the World to be modified so asto provide
anewting of arandom interval between one and six days only.

#97656
Aliases: AKA+
Title: 50 Aliases
Author: QuinnGrrl (#19845)
Closed: April 21, 1998
Votes: 241 in favor, 446 opposed, and 125 abstaining.
Status: Defeated
This ballot sought to increase to 50 the maximum number of player aliases
alowed.

LambdaM OO Ballots 363

#51855
Aliases: Fun
Title: Fun
Author: Gary (#110811)
Closed: May 6, 1998
Votes. 232 infavor, 484 opposed, and 132 abstaining.
Status: Defeated
This ballot sought to:
. Remove the text of hel p manner s
. Remove Arbitration
. Modify the text of hel p t hene to include a pointer to hel p fun
. Add the help topic hel p f un which would state that the purpose of
LambdaM OO is to have fun and that anything goes (except expect to be
dealt with if your idea of fun isto crack or damage the system).

#67194
Aliases:. RARZ2, Rescind_Arbitration Please, RAP, RAP2
Title: Rescind Arbitration Please
Author: Sleeper (#98232)
Closed: June 29, 1998
Votes: 244 infavor, 147 opposed, and 156 abstaining.
Status: Defeated
This ballot sought to rescind * B:Arbitration.

#107750
Aliases: Jury, Something-Completely-Different, SCD
Title: An Alternative to the Arbitration System
Author: Yib (#58337)
Closed: August 25, 1998
Votes. 216 infavor, 123 opposed, and 189 abstaining.
Status: Defeated
This ballot sought to create an alternative to the Arbitration system, consisting of
apanel of jurors who would hear, consider, and decide on cases. The ballot specified:
A method of jury selection
Term of office
Tools and accouterments for the jury to use
A mechanism for tracking cases
Jurors' privileges and limitations
An appeals process
A mechanism to remove jurors

L] L] L] L] L] L] L]

364 LambdaM OO Ballots

#77315
Aliases:. Make Boonton Honest
Title: M ake Boonton Honest
Author: Downtime (#108986)
Closed: October 16, 1998
Votes. 224 infavor, 281 opposed, and 174 abstaining.
Status: Defeated
This ballot sought to force the player known as Boonton to append the words,
“marginally smarter than a monkey” to his signature on all his posts to public lists.

#68943
Aliases. How_Long?
Title: How_Long?

Author: Jaybird (#105276)
Closed: October 28, 1998
Votes. 438 infavor, 52 opposed, and 114 abstaining.
Status: Implemented

Thisballot called for the wizards to recycle all petitions that had not been
modified for more than nine months and had no signatures, and to set up a
mechanism so that petitions that have been denied vetting and remain
untouched/unsigned for nine months or more will be recycled. Petitions that belong
to characters that have aregistered second who is awizard are exempt, and
*B:Shutdown (#100000) is exempt aswell. A copy of the to-be-deleted petition’ s text
will be sent to the author of the to-be-deleted petition via MOOmail.

#108101
Aliases: Voting_information_and Options, VIO
Title: Voting_information_and Options

Author: Farcan (#108472)
Closed: November 4, 1998
Votes: 250 in favor, 134 opposed, and 113 abstaining.
Status: Defeated

This ballot proposed sending MOOmail to each player when e reached voting
age, explaining how to use the petitions process. It furthermore requested that the
wizards provide a command by which players might remove themselves from the
roster of registered voters and another command for rejoining the roster of registered
voters. This command would, among other things, set certain of a player’s petition
options in specified ways. There would also be a one-line command to see whether a
player was aregistered voter or not.

LambdaM OO Ballots 365

#12133
Aliases;
Title:
Author:
Closed:
Votes.
Status:

repeal, repealing, repeal petitions, r50

Simple majority to repeal petitions

Sleeper (#98232)

November 7, 1998

179 in favor, 212 opposed, and 123 abstaining.
Defeated

This ballot specified that a petition that solely sought to repeal any other single
ballot would only require a simple majority to pass.

#77415
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Simple_Majority, majority, maj

Simple Magjority

TMFKANG64 (#110825)

November 7, 1998

119 in favor, 297 opposed, and 96 abstaining.
Defeated

This ballot stipulated that henceforth any petition becoming a ballot would
require a simple majority to pass, not a 2/3 supermajority.

#95136
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Vendettas

Keep personal vendettas out of the petition system
soup (#110586)

November 8, 1998

276 in favor, 169 opposed, and 85 abstaining.
Defeated

This ballot stipulated that the wizards would no longer vet petitions aimed at
affecting one specific typist.

#79238
Aliases:
Title:
Author:
Closed:
Votes:
Status:

GagGuest, GagGuestSites, gg, ggs

Gagging and Refusing Guests

Nuveena (#86941)

January 29, 1999

404 in favor, 84 opposed, and 81 abstaining.
Implemented

This ballot provides away by which players can @ag all guests from a particular
guest’s site.

366 LambdaMOO Ballots

#99022
Aliases. OMT
Title: One More Time!
Author: Jaybird (#105276)
Closed: February 1, 1999
Votes. 276 infavor, 137 opposed, and 128 abstaining.
Status: Implemented
This ballot repealed * B:Arbitration.

#25438
Aliases. Intolerance
Title: Intolerance

Author: Sage (#74894)
Closed: March 11, 1999
Votes: 404 infavor, 110 opposed, and 104 abstaining.
Status. Implemented

This ballot expresses LambdaM OO citizens' support for the wizards' “newting or
toading players who have used LambdaM OO to enable, encourage or cause actions
which maliciously threaten or cause harm to the Real Life well-being of other

typists,” and adds a similarly-worded paragraph to the text of hel p nanners.

#73986
Aliases: Anonymity
Title: Anonymity
Author: Klaatu (#114081)
Closed: March 13, 1999
Votes: 405 in favor, 94 opposed, and 92 abstaining.
Status. Implemented
This ballot added a paragraph to the text of hel p manner s stating that
disclosing a player’ s offline identity without that player’s consent “may be considered
the worst form of unmannerly behavior and may result in swift, permanent
expulsion from LambdaM OO.”

#69024
Aliases: UnnecessaryDelay
Title: Unnecessary Delay
Author: JohnBoy (#85460)
Closed: March 28, 1999
Votes: 244 infavor, 136 opposed, and 138 abstaining.
Status: Defeated
This ballot proposed allowing players to sign a petition while it was under review
for vetting. Signatureswould be erased if vetting was denied, but preserved if vetting
was granted.

LambdaM OO Ballots 367

#29452
Aliases;
Title:
Author:
Closed:
Votes.
Status:

40

40 Signatures

Jaybird (#105276)

May 9, 1999

188 in favor, 169 opposed, and 189 abstaining.
Defeated

This ballot proposed changing the number of signatures required to promote a
petition to ballot status to 40, and changing the number of signatures required to
promote an ARB nomination petition to ballot status to 40.

#51783
Aliases:
Title:
Author:
Closed:
Votes.
Status:

Guest-l1dling-Limits, Guest-ldle, gidle

Guest Idling Limits

Roebare (#109000)

May 14, 1999

478 in favor, 88 opposed, and 57 abstaining.
Implemented

This ballot instituted the automatic disconnection of guests who have been idle
for more than one hour.

#A6748
Aliases:
Title:
Author:
Closed:
Votes:
Status:

ToadWrit

ToadWriting

Bear(tm) (#88110)

June 3, 1999

120 in favor, 143 opposed, and 177 abstaining.
Defeated

Thisballot called for the @ oadi ng of the player WriTinG (#73920) and all
known secondaries.

#114559

Aliases:
Title:
Author:
Closed:
Votes:
Status:

Player-Do_Command, do_command, docmd
Allowing players to hook into $do_command
xmath (#115429)

July 4, 1999

158 in favor, 106 opposed, and 143 abstaining.
Defeated

This ballot proposed allowing players and/or player class owners to process typed
commands before the system object processes them.

368 LambdaMOO Ballots

#61719
Aliases. AD, Arbitration Day, Lambda' s Bastille Day
Title: Arbitration Day
Author: Qui-Gon_Jinn (#110777)
Closed: July 7, 1999
Votes. 195 in favor, 126 opposed, and 99 abstaining.
Status: Defeated
This ballot called for an annual MOO holiday to celebrate the repeal of
*B:Arbitration, and specified some of the merriment to occur.

#99296
Aliases:. NewtBoard
Title: NewtBoard
Author: Legion (#69858)
Closed: July 16, 1999
Votes. 164 infavor, 188 opposed, and 94 abstaining.
Status: Defeated
This ballot proposed establishing an elected board of players who would be
empowered to @ewt players who had egregiously violated the text set forth inhel p
manner s, and a process by which the populace might communicate its desire to have
aplayer @ewt ed.

#72096
Aliases. FQT
Title: *p:Flexible Quota Transfer
Author: delLaMer (#111890)
Closed: July 27, 1999
Votes: 170 in favor, 162 opposed, and 108 abstaining.
Status: Defeated
This ballot proposed allowing players to transfer quota on either an absolute or a
probationary basis.

#32418
Aliases:. NoQT
Title: No Transferring Quotato Players Too Y oung to Transfer Quota Themselves
Author: Etoile (#113614)
Closed: July 30, 1999
Votes: 290 in favor, 96 opposed, and 73 abstaining.
Status: Implemented

This ballot prohibits the transfer of quotato players who are not old enough to
transfer it back, except that a registered secondary character may receive quota from
eir primary character regardless of age.

LambdaM OO Ballots 369

#12460
Aliases:. Take Out_The Trash, TotT, Trash, $Garbage, Take
Title: Deleting Extra $Garbage
Author: Harry_Potter (#110777)
Closed: August 8, 1999
Votes. 280 in favor, 95 opposed, and 95 abstaining.
Status: Implemented
Thisballot called for a one-time deletion of recycled objects from the database so
as to bring the total number of recycled objects down to no more than 20,000.

#96112

Aliases: toadshard, toad-shard, toad shard, ts, lynchshard, lynch-shard,
lynch_shard, Is

Title: Toad shard

Author: fifelfoo (#79261)

Closed: August 13, 1999

Votes. 146 in favor, 205 opposed, and 176 abstaining.

Status: Defeated

This ballot called for the @ oadi ng of the player shard (#117190) and any
known secondaries.

#111951
Aliases: 8MailAlias, EightMailAliases
Title: Limit Mailing liststo 8 Aliases
Author: Krate (#47498)
Closed: August 21, 1999
Votes: 356 in favor, 64 opposed, and 79 abstaining.
Status. Implemented
This ballot stipulates that a MOO mailing list may have no more than eight
aliases.

#54623
Aliases: Stop_Lady-Dawn’s Scamming, SLDS
Title: Stop Lady-Dawn’ s Quota Fraud
Author: POSV (#112523)
Closed: August 24, 1999
Votes: 334 infavor, 143 opposed, and 106 abstaining.
Status. Implemented
This ballot called for the character Lady-Dawn (#117023) and any known
secondaries to be prohibited from receiving quota transfers from other players, and

for all quota previously transferred to her viathe @t quota transfer mechanism to be
returned to the original donors.

370 LambdaM OO Ballots

#101306
Aliases. Better Transfers, FQT2, better, bt
Title: Flexible Quota Transfer v. 2.0
Author: delLaMer (#111890)
Closed: September 3, 1999
Votes. 229infavor, 107 opposed, and 101 abstaining.
Status: Implementation begun
This ballot callsfor the addition of an option for players to transfer quotaon a
probationary basis.

#107473
Aliases. Wiffle2, w2, wiff2
Title: Wiffling's Second At Bat
Author: lights (#113418)
Closed: September 8, 1999
Votes. 199 in favor, 169 opposed, and 102 abstaining.
Status: Defeated
This ballot proposed establishing a slightly modified version of the system
specified in * B:Wiffle (#12309)

#26342
Aliases. Bravely Gag Jaybird, BGJINFAFS, BGJ
Title: Bravely Gag Jaybird Ignoring Nipped Fingers and Frantic Squawking
Author: Musketeer (#112067)
Closed: September 14, 1999
Votes: 105 in favor, 261 opposed, and 151 abstaining.
Status: Defeated
This ballot proposed prohibiting the player Jaybird (#105276) from posting to
petition and ballot mailing lists.

#106923
Aliases: speedboot
Title: speedboot
Author: mingaloid (#101361)
Closed: September 24, 1999
Votes: 219in favor, 133 opposed, and 115 abstaining.
Status: Defeated
This ballot proposed a streamlined version of the command used to boot guests
from the system.

LambdaM OO Ballots 371

#37998

Aliases. ToadtheToaders, ttt

Title: Toad the Toaders

Author: Hibernian (#63402)

Closed: September 25, 1999

Votes. 135infavor, 251 opposed, and 76 abstaining.
Status: Defeated

This ballot proposed that should someone author a petition to @ oad one or
more players, a companion petition to toad the original petition’s author would be

created at the same time the original @ oad petition was vetted.

#86159
Aliases: Informed_Quota Consumers, IQC
Title: Informed_Quota_Consumers

Author: Hobgoblin (#105941)
Closed: September 25, 1999
Votes. 240 in favor, 101 opposed, and 85 abstaining.
Status: Implemented

This ballot specifies that new players who are entitled to receive an initial quota
allotment shall receive this quota in two stages. The initial allotment shall be 20,000
bytes, with the remaining 30,000 bytes to be granted after new players have read text
that briefly describes quota’ s significance on LambdaM OO. That text is as follows:

LambdaMOO is limted in size; it must stay bel ow 200 nmegabytes in
order to function snoothly. You are sharing this 200
megabyte environnment with over 5000 other players. Wen
each of us starts out here on LanbdaMOO, we each begin with
a quota all owance which is our share of this world.

Quota is required for all builders and programers who wish to
create objects on LanbdaMOO. It is alimted resource. It
is inportant for you to recognize this as you w thdraw the
remai nder of your initial quota allotnment. Carefully weigh
your needs when deci di ng where your quota will be used or
donat ed; not everyone has your best interests at heart in
this regard. Anything that you wish to build or create in
the future will require quota. Spend your quota wi sely.

372 LambdaM OO Ballots

#77081
Aliases: Unsend
Title: Unsend
Author: Gear (#104262)
Closed: September 25, 1999
Votes. 240 infavor, 116 opposed, and 76 abstaining.
Status: Implemented

Thisballot calls for a mechanism by which players may try to retract MOOmail
that has been sent to another player. (There are some circumstances where thisisa
technical impossibility (e.g. when a player has eir mail options set to netforward
l\r/I]OO;naiI instead of saving it within the M OO); this ballot of necessity exempts
those.

#102883
Aliases: 16mailaliases, 16
Title: 16 Mail Aliasesfor Mail Folders
Author: spivak (#105570)
Closed: September 26, 1999
Votes: 194 infavor, 141 opposed, and 88 abstaining.
Status: Defeated
This ballot proposed increasing the numbers of aliases amailing list may have
from eight to sixteen.

#100000
Aliases; Shutdown
Title: Shutdown
Author: #4 (Petitioner)
Closed: October 8, 1999
Votes. 112 infavor, 790 opposed, and 39 abstaining.
Status: Defeated

This ballot specifies that LambdaM OO will be permanently shut down 8 weeks
after passage. (Thisisaspecial ballot created as part of the policy statement known as
“LambdaM OO Takes Another Direction” (LTAD) and requires only a simple majority
topass. Seedsohel p LTAD.) Thisisthe second time that * B:Shutdown was brought
to ballot (see page 353).

#64539
Aliases:. Co-Authorship, ca, coa
Title: Allowing Petitions/Ballots to Have Multiple Authors
Author: Shimizu (#116587)
Closed: October 21, 1999
Votes: 252 infavor, 101 opposed, and 117 abstaining.
Status: Implementation begun
This ballot callsfor the creation of a mechanism by which more than one player
may co-author a petition.

LambdaM OO Ballots 373

#56428
Aliases. penguins _ahoy!, pal, pa
Title: penguins ahoy!
Author: snarl (#106787)
Closed: October 22, 1999
Votes. 319 infavor, 196 opposed, and 80 abstaining.
Status: Defeated
This ballot specifies that each year on heyoka' s (#109226) official birthday, all
guests shall take the form of penguins, e.g., Red_Penguin, Ultraviolet_Penguin, etc. It
also requests a few other specific forms of merriment.

#91237
Aliases. Stand Up Against_Gilmore The Opresor, opresor, op
Title: Stand Up Against Gilmore The Opresor
Author: ‘Warhol' (#102178)
Closed: October 25, 1999
Votes. 196 in favor, 209 opposed, and 115 abstaining.
Status: Defeated
This ballot proposed giving the player known as Gilmore (#34435) the
opportunity to swear that he will for all future times abstain from discriminating
against players based upon their object number. It specified that if Gilmore failed to

do this, his player object would be converted to and his possessions transferred to a
new player object with a six-digit number.

#64102
Aliases: VI, Voting_Information, VVoting_Information
Title: Voting_Information

Author: Farcan (#108472)
Closed: November 2, 1999
Votes: 323 infavor, 78 opposed, and 79 abstaining.
Status. Implemented

Thisballot callsfor MOOmMmail to be sent to players upon reaching voting age.
The MOOmail would include the following information: how to read, sign, and
create petitions, how to submit petitions for vetting, and how to vote on open
ballots. It shall have areferenceto hel p @etiti on-conmands, have areference to
hel p petitions and have areferencetohel p @ ef use.

374 LambdaM OO Ballots

mailto:@petition-commands
mailto:@refuse

#1807
Aliases. No-Special-Treatment, No_Special_Treatment, NST, INST
Title: No special treatment for specific characters
Author: Melki (#116569)
Closed: November 4, 1999
Votes. 167 infavor, 207 opposed, and 113 abstaining.
Status: Defeated

This ballot stipulates that no petition may call for any change which singles out
any player for ongoing differential treatment (e.g. granting or denying privileges)
based upon eir identity alone, except that petitions may assign players to established
categories with different privileges (e.g. removing a builder or wizard bit), or expel
them from the MOO (@ewt i ng/@ oadi ng). (The ballot text gives some examples of
acceptable and unacceptable legislation.)

#65388
Aliases: Alt-des, Altd
Title: Legal Self-destruction of Alts
Author: Vorial (#113841)
Closed: November 18, 1999
Votes: 293 infavor, 71 opposed, and 117 abstaining.
Status: Still to do
This ballot specifies that players may unilaterally elect to recycle registered
secondary characters.

#49066
Aliases. Ladt, LastPetition, LastBallot, L astPetition/Ballot, LastPetition-Ballot, LPB,
LP, LB, FixLoophole, FixL oopholes, TheUltimatel oophol eFix
Title: The Last Petition/Ballot
Author: Sunny (#58292)
Closed: December 21, 1999
Votes: 109 in favor, 382 opposed, and 65 abstai ning.
Status: Defeated
This ballot specified that, if passed, the wizards would dismantle the
petition/ball ot process.

#85089
Aliases: nmss, No_More_Secret_Seconds, Public_Seconds, ps
Title: No More Secret Seconds
Author: Utterly Lame (#93141)
Closed: January 20, 2000
Votes. 196 infavor, 248 opposed, and 118 abstaining.
Status: Defeated
This ballot stipulated that illegal secondary characters would be publicly
identified if and when caught. It also specified that players would be provided with a
way to make the identities of their own registered secondary characters available to
the public if desired.

LambdaM OO Ballots 375

#34281
Aliases;
Title:
Author:
Closed:
Votes.
Status:

QTR2

Quota Transfers to Registered Seconds.

del aMer (#111890)

March 15, 2000

201 in favor, 114 opposed, and 127 abstaining.
Defeated

This ballot specifies that players may transfer quota between their own registered
secondary characters regardless of MOO age.

#11644
Aliases:
Title:
Author:
Closed:
Votes:
Status:

bounce in_the LR, bounce

@bounce in the Living Room

hhsb (#115393)

April 24, 2000

172 in favor, 229 opposed, and 115 abstaining.
Defeated

This ballot called for a mechanism by which players could “bounce” atargeted
player from the LambdaM OO Living Room (#17) for a particular duration of time.

Players who had been @ounced would not be permitted to return during the next
one hour.

#6821
Aliases:
Title:
Author:
Closed:
Votes:
Status:

SHIP

Seniority Has Its Privileges

Fionaa (#93049)

April 30, 2000

406 in favor, 115 opposed, and 56 abstaining.
Implemented

This ballot specifies that each player will be granted an additional 5000 bytes of
quotafor every full year of MOO age, up to a specified maximum.

#3076
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Position-Papers, PP

Take a Stand, One-To-A-Person, Modify it if You Want
Yib (#58337)

May 3, 2000

243 in favor, 69 opposed, and 138 abstaining.

Still to do

This ballot calls for acommand or mechanism to be added to the generic
petition which would enable a player to submit a single position statement. These
position statements shall be kept separately from regular posts to the petition mailing
lists. A player may only have one such position statement per petition/ballot, but
may modify it or remove it at any time. An additional command shall be provided to
read the position statements in chronological order of addition and modification.

376 LambdaMOO Ballots

#10324
Aliases:. Handling_Commands_Early, early _commands, commands, cmds
Title: Handling commands before the parser
Author: xmath (#115429)
Closed: May 9, 2000
Votes. 194 infavor, 124 opposed, and 146 abstaining.
Status: Defeated
This ballot called for players and or player classes to be able to process a
command before the parser does. It issimilar to *B:Player-Do_Command (#114559),
except that by default the behavior would be turned off.

#104009
Aliases: cock, cockatoo, put_the cock back in_cockatoo
Title: That’s an awful lot of gagging for such awee little cock

Author: soup (#110586)
Closed: May 26, 2000
Votes. 288 infavor, 177 opposed, and 78 abstaining.
Status: Defeated

This ballot proposed that the cockatoo (#1479) be modified in such away that
gagging it would only work one out of every three attempts, and that if the attempt
to gag it should fail, the player attempting to gag it would have to wait until after
someone else’ s successful gag attempt before being able to try again.

#110694
Aliases. Wiffle3, wiff3, w3
Title: Give Us Wiffling, Dammit
Author: GreyDruid (#110777)
Closed: June 23, 2000
Votes: 90in favor, 84 opposed, and 28 abstaining.
Status: Defeated
This ballot called for the system specified in * B:Wiffle2 to be implemented,
except modified so that no wiffler could be hit more than once every thirty seconds.

#A45794
Aliases: Allow_Transfers to Registered Seconds, ATRS, Allow, Allow_Transfers, arts
Title: Allow Transfers to Registered Seconds
Author: delLaMer (#111890)
Closed: August 21, 2000
Votes. 102 in favor, 54 opposed, and 30 abstaining.
Status: Defeated
This ballot proposed to eliminate the 4-month age restriction for transferring
quota between registered secondary characters.

LambdaM OO Ballots 377

#62990
Aliases: Efficient_Registrar_Selection, Reg_Eff, RegEff, Reg_Ef, RegEf
Title: Reform of Registrar Selection Process
Author: Mediocrity (#106189)
Closed: August 27, 2000
Votes. 58 infavor, 74 opposed, and 35 abstaining.
Status: Defeated
This ballot sought to discontinue the periodic election of lay registrarsin favor of
asystem whereby lay registrars would serve for life. It provided for wizardly
appointment of new lay registrarsin the event an existing one left the MOO or was
otherwise found by the wizards not to be performing eir duties to wizardly standards.

#51338
Aliases. drama_queens, dq
Title: No More Melodramatic Mooicides
Author: hhsb (#115393)
Closed: September 11, 2000
Votes: 241 infavor, 111 opposed, and 98 abstaining.
Status: Still to do

*Ballot:Bring_Back _the Blender stipulates that the cuisinart in the LambdaM OO
kitchen shall be modified so asto kill off a character and permanently remove em
from the LambdaM OO database. It furthermore stipulates that those jumping off the
edge of the world shall endure a newting comparable to that of the Russian Roulette
pistol (aperiod of between two and six days). Asapartial implementation of *B:BBB,
the wizards began | etting people come back early from self-newting off the Edge of
the World if they had been gonefor at least aweek. This ballot calls for that practice
to cease until real teeth are actually installed in the Cuisinart (so to speak).

#10326
Aliases. Election
Title: Mock Election on LambdaM OQO!
Author: Boonton (#76209)
Closed: September 30, 2000
Votes: 174 infavor, 172 opposed, and 86 abstaining.
Status. Defeated
This ballot called for a mechanism with which to hold a mock U.S. Presidential
election on the MOO.

378 LambdaM OO Ballots

#101738
Aliases. Mail, Mail-Name-DB, mndb, mail-name, name-db
Title: Tastes Great, Less Tickage
Author: GhostDruid (#110777)
Closed: October 26, 2000
Votes. 282 infavor, 50 opposed, and 88 abstaining.
Status: Still to do
This ballot provides for a different, more efficient way of storing MOO mailing
lists. It furthermore stipulates that mailing lists will be permitted to have up to 20
aliases each, and that destroyed lists will have their names cached for 60 days.

#68457
Aliases: closet
Title: Alternative starting points
Author: pupa (#118222)
Closed: October 27, 2000
Votes. 92 infavor, 153 opposed, and 71 abstaining.
Status: Defeated
This ballot proposed making the push-button in the linen closet send players to
one of four randomly-sel ected destinations.

#41579
Aliases; More-Choices
Title: More-Choices

Author: Hannibal (#104762)
Closed: November 9, 2000
Votes. 40in favor, 144 opposed, and 85 abstaining
Status: Defeated
This ballot proposed lowering the number of signatures required for promoting
an ARB nomination petition to ballot from 50 to 30.

#86634
Aliases:. ATTRS2, Allow_Transfers To Registered Seconds 2
Title: Allow Transfers To Registered Seconds 2
Author: AndroidLust (#109830)
Closed: November 9, 2000
Votes. 144 infavor, 129 opposed, and 78 abstaining
Status: Defeated
This ballot proposed eliminating the 4-month age restriction for transferring
gquota between primary and registered secondary characters.

LambdaM OO Ballots 379

#76830

Aliases: dliens

Title: @request to be Abducted by Aliens

Author: RinkRabbit (#103685)

Closed: November 13, 2000

Votes. 225infavor, 119 opposed, and 68 abstaining
Status: Defeated

This ballot proposed changing the departure message for the @ equest
command to depict the requestor as being abducted by aliens.

#86867
Aliases: Notify-Seconds, notify2, n2
Title: Notify People when they are registered as seconds
Author: RussianMob (#117379)
Closed: November 21, 2000
Votes. 227 infavor, 62 opposed, and 77 abstaining
Status: Still to do
This ballot requires the wizards to notify all involved parties whenever they
make or alter aregistered-second relationship between player characters.

#115295
Aliases: impl
Title: Implementation Notes

Author: Elayne (#118426)
Closed: November 28, 2000
Votes: 119infavor, 142 opposed, and 97 abstaining
Status: Defeated
This ballot proposed requiring draft implementation notes as an added condition
for a petition’ s vetting.

#116799
Aliases: TITT, TIT
Title: Throw in the Towel
Author: Yib (#58337)
Closed: Friday, December 1, 2000
Votes: 187 infavor, 165 opposed, and 70 abstaining
Status: Defeated
This ballot proposed making the vetting of petitions either automatic or not
required, and the implementation of ballots (either passed or failed) entirely optional,
at the wizards' discretion.

380 LambdaMOO Ballots

#108571
Aliases; MOOmMmailreform, mmr, personalmoomail, pmm, kill_even_more_lag, keml
Title: People are Mail Folders Too
Author: spivak (#105570)
Closed: December 23, 2000
Votes. 196 infavor, 112 opposed, and 57 abstaining
Status: Defeated
This ballot proposed prohibiting individual players from receiving MOOmail if
they were more than 50,000 bytes over quota.

#14009
Aliases. oldcoc
Title: Restoration of the Cockatoo
Author: graeme (#119071)
Closed: February 17, 2001
Votes. 203 infavor, 179 opposed, and 122 abstaining
Status: Defeated
This ballot proposed that the cockatoo (#1479) be returned to its state before the
player Stetson (#65101) was granted ownership of it. It furthermore proposed that if
the cockatoo was to remain aresident of the Living Room (#17), then any further
development be done on a child object rather than on the original.

#114042
Aliases: laugh
Title: Let’slaugh alittle less ludicrously
Author: Kobot (#113671)
Closed: March 2, 2001
Votes. 250 in favor, 213 opposed, and 54 abstaining
Status: Defeated
This ballot proposed replacing the “tiresome and unpopular” text of the social
verb | augh on #40842 (Social Verb Core and Feature Object). The unnecessarily
exuberant text, "Munchkin falls down laughing," would have become, simply,
"Munchkin laughs."

#52006
Aliases. impl-choice, Lend-A-Hand, opt-in-impl
Title: Lend a Hand with Implementation Notes (If Y ou Choose)

Author: active (#91798)
Closed: April 4, 2001
Votes. 129 infavor, 60 opposed, and 103 abstaining
Status: Still to do

This ballot calls for a mechanism by which players may attach draft
implementation notes to a petition prior to vetting, and also a mechanism by which
a petition’ s author may indicate eir first choice among the draft implementation
notes submitted.

LambdaM OO Ballots 381

#7518
Aliases;
Title:
Author:
Closed:
Votes:
Status:

toadcobot, tc

Toad #117343

fifel (#79261)

May 1, 2001

112 in favor, 227 opposed, and 123 abstaining
Defeated

Thisballot called for the @ oadi ng of the player cobot (#117343).

#104646

Aliases:
Title:
Author:
Closed:
Votes:
Status:

ToadBlissboi, ToadWriT2, ToadDegage, ToadWriTinG2, TW2, tb
ToadWriTinG 11

Benny (#114539)

May 17, 2001

213 in favor, 99 opposed, and 116 abstaining

Implemented

Thisballot called for the @ oadi ng of Blissboi (#117469), all registered seconds,
and any identifiable illegal seconds.

#111961

Aliases:
Title:
Author:
Closed:
Votes:
Status:

rosa

Redistribution of Short Aliases
ObsessionRose (#78546)

June 14, 2001

193 in favor, 254 opposed, and 45 abstaining
Defeated

This ballot proposed limiting players to only one alias shorter than three
characterslong. It furthermore called for players holding more than one short alias
to remove those aliases within one month’s time, and stipulated that those who
failed to do so would have al short aliases removed from them by the wizards.

#34584
Aliases:
Title:
Author:
Closed:
Votes:
Status:

Resolved

September 11th Resolution

Boonton (#76209)

January 3, 2002

193 in favor, 216 opposed, and 56 abstaining
Defeated

This ballot proposed designating September 11 as a holiday in remembrance of
the terrorist attack on the World Trade Center towersin New Y ork City. It stipulated
that elections and ballot voting would be suspended, that wizards would not vet or
implement petitions (except this one) on that day, and that a request would be
broadcast to all connected players for amoment of silence at 8:45 am, 9:02 am, 9:38
am and 9:45 am, Eastern U.S. time.

382 LambdaM OO Ballots

#71120
Aliases. Noisy-Default, noisy, nd
Title: Partially Rescind * B:Login-Choice
Author: GrinchDruid (#110777)
Closed: January 12, 2002
Votes. 218infavor, 61 opposed, and 60 abstaining
Status: Implemented

This ballot abolished the noisy/quiet prompt that had been set up by *B:Login-
Choice, and made it so that the (noisy) Coat Closet (#11) was once again the
connection location for guests. New players still see the noisy/quiet prompt; guests
and new players will have their home set to the Linen Closet (#47726). A lever was
installed in each closet, appropriately labeled, that would transport someone to the
other closet.

#22653
Aliases:. Toad this be-otch
Title: TTh
Author: Jerri_Blank (#117367)
Closed: February 28, 2002
Votes: 159 in favor, 130 opposed, and 143 abstaining
Status: Defeated
This ballot called for the @toading of the following characters. Sabastian
(#112623), Aglaia (#112632), Phalin (#112640), hiccup (#115676), PKelly (#119005),
Hepper (#118091), on the grounds that they were all illegal seconds of Nancy’s.

#70573
Aliases. NoBoot
Title: Players will be able to stop guests being booted.
Author: pupuck (#118222)
Closed: July 15, 2002
Votes. 201 infavor, 122 opposed, and 41 abstaining
Status: Defeated
This ballot called for a mechanism that would enable players to stop a guest from
being booted.

#68178
Aliasess MTM
Title: Make @Tutorial a More Visible Option for New Guests
Author: Gabaldon (#117345)
Closed: July 27, 2002
Votes: 219infavor, 46 opposed, and 35 abstaining
Status: Still to do
This ballot called for adding ayes/no prompt to the guest login script that would
ask if the guest is “afirst-time or fairly new visitor to LambdaM OO who would like
aﬁsistanc_eain learning basic MOO commands” and, if so, would transport the guest to
the tutorial.

LambdaM OO Ballots 383

mailto:@toading
mailto:@Tutorial

#22447

Aliases. Congrats

Title: Two Reserved Characters (Congrats ydud!)
Author: jaime (#35330)

Closed: September 26, 2002

Votes. 257 infavor, 86 opposed, and 46 abstaining
Status: Still to do

This ballot called for the creation of two new characters in honor and celebration
of the RL birth of twinsto the wizard yduJd.

#112667
Aliases: guest_timeout
Title: shorten_guest_idle_timeout
Author: habibi_with_wild_rice (#115177))
Closed: December 3, 2002
Votes. 221 infavor, 90 opposed, and 32 abstaining
Status: Implemented
This ballot shortened the idle timeout limit for guests from one hour to fifteen
minutes.

384 LambdaM OO Ballots

Bibliography

Busy, Andrew

1995 Secrets of the MUD Wizards. Indianapolis, IN: Sams.net. This book is
mostly about MUDs, rather than MOOs. The chapter on MOO
programming (contributed by Chris Stacy) is well written and
informative.

Curtis, Pavel
1997 LambdaMOO Programmer’s Manual. Available via ftp from

ftp. |l anbda. noo. nud. or g, pub/ MOQ Pr ogr ammer sManual . t xt

and 'PUb/' MOQ Pr ogr anmer sManual . ps. Z. This is the definitive
specification of the MOO programming language.

Dibbell, Julian

1998 My Tiny Life: Crime and Passionin a Virtual World. New York, NY: Owl

Books, Henry Holt & Company, Inc. A memoir (mostly about
LambdaM OO).

Haynes, Cynthia (editor) and Holmevik, Jan (editor)

1998 High Wired: On the Design, Use, and Theory of Educational MOOs. Ann
Arbor, MI: University of Michegan Press. A collection of essays about
educational MOOs.

Holmevik, Jan and Haynes, Cynthia

2000 MOOniversity. Boston, MA: Allyn & Bacon. Introduces educational
MOOs and describes the EnCore MOO platform. Emphasizes the use
of MOOs as atool for collaborative writing.

385

| ndex

', 290
1,291
#, 243, 291
#-1, 153
$
designator for special objects, 37
referring to the last element of alidt,
141
$container, 37
$limbo, 248
$note, 37
$object_utils, 297
$player_start, 250
$room, 37
$spell, 260
$thing, 37
%N, 116
%s, 116
5, 10
11
;, 125
5, 164
?, 290
?...] construct, 133
@, 243
convention (in command names),
27
@abort, 259
@addalias, 259
@addalias#, 259
@adddict, 260
@addfeature, 42, 260
@addlag, 260
@add-notify, 260
@add-owned, 260
@addroom, 45, 260
@addword, 260
@age, 261
@answer, 261
@arb, 261
@arb-ballots, 261
@arb-petitions, 261

@args, 261
@argst, 261
@at, 261
@audit, 83, 262
@ballots, 262
@ban, 34, 262, 313
@banned, 262
@boot, 262, 316, 325
@bug, 262
@build-options, 263
@check, 263
@check-chparent, 263
@check-full, 30, 260, 263
@check-property, 263
@chmod, 263
@chparent, 43, 86, 264
troubleshooting, 263
@classes, 264
@clearproperty, 264
@clear-tell-filter-hook, 264
@clproperty, 264
@comment, 264
@complete, 264
@contents, 45, 88, 99, 264
@copy, 265
@copy-move, 265
@copy-Xx, 265
@count, 265
@countDB, 265
@create, 38, 45, 79, 80, 82, 84, 265
resource-limit-exceeded error, 92
@cspell, 265
@dbsize, 265
@define, 266
@denewt, 266
@describe, 45, 80, 266
@detail, 266
@details, 266
@dig, 45, 79, 80, 84, 266
exits, 85
rooms, 84
@disown, 266

Index 387

@display, 45, 127, 267
@display-options, 267
@dump, 45, 267
@dview, 224

@edit, 267
@edit-options, 267
@egrep, 267

@sgject, 32, 34, 40, 268
@eval-d, 268
@examine, 269
@features, 269
©@find, 42, 269
@flush-cache, 269
@forget, 269
@forked, 132, 269
@forked-verbose, 270
@forward, 270

@gag, 29, 260, 270
@gaglist, 29, 270
@gag-site, 270
@qgag-sites, 270
@gender, 45, 270
@gethelp, 270

@gms, 270

@qgo, 45, 271

@grep, 271

@gripe, 271

@idea, 271

@join, 45, 272
@keep-mail, 272
@kids, 83, 272

@kill, 151, 272
@killquiet, 272
@known-objects, 272
@l ast-connection, 272
@lastlog, 272
@linelen, 8
@linelength, 272
@list, 273

@list#, 273

@listdefs, 273
@list-followers, 273
@listgag. See @gaglist
@locations, 273
@lock, 31, 88, 273
@mail, 45, 273

©@mail-all-new-mail, 274

@mail-options, 45, 274
@make-petition, 274

388 Index

@measure, 91, 274
@messages, 46, 80, 274
@mode, 274

@more, 8, 275

@move, 40, 275
@netforward, 275
@newmessage, 275
@newt, 275

@next, 45, 275
@nominate, 276
@notedit, 276
@nproperty, 276
@owner, 276
@pagelen, 8
@pagelength, 276
@paranoid, 14, 30, 276
@parent, 276
@parents, 43, 82, 277
@password, 45, 277
@paste, 277

@pasteto, 277
@pc-news, 277
@pc-options, 277
@pedit, 277
@petition-options, 277
@petitions, 278
@prettylist, 278
@previous, 278
@prog-options, 278
@program, 45, 278
@program#, 278
@property, 45, 101, 103, 278
@prospectus, 278
@qreply, 278

@gsend, 279
@quickreply, 278
@quicksend, 279
@quit, 9, 18, 45, 279
@aquota, 90, 279
@ranm. See @read-all-new-mail
@read, 45, 279
@read-all-new-mail, 279
@reaper-ballots, 279
@reapers, 279
@recreate, 86, 280
@recycle, 81, 280
@refusal-reporting, 280
@refusals, 31, 280
@refuse, 30, 45, 280

mailto:@gaglist
mailto:@read-all-new-mail

@registerme, 280
@registrar-ballots, 280
@registrar-petitions, 280
@registrars, 281
©@remember, 281

@remove-feature. See @rmfeature

@rename, 281
@renumber, 281
@reply, 281
@request, 14, 15, 281
@resend, 281
@resident, 282
@residents, 282
@rmalias, 282
@rmaliast, 282
@rmdict, 282
@rmfeature, 43, 282
@rmlag, 282
@rmmail, 282
@rmproperty, 282
@rmroom, 282
@rmverb, 283
@rmverb#, 283
@rmword, 283
@rn, 283
@rooms, 45, 283
@send, 45, 283
@s¢t, 86

with messages, 88
@setenv, 164, 283
@sethome, 283
@setprop, 284
@set-tell-filter-hook, 284
@show, 284
@skip, 284
@sort-owned-objects, 284
@spell, 284
@spellmessages, 284
@spellproperties, 284
@spurn, 34, 285
@spurned, 285
@sshow, 285
@subscribe, 45, 285
@subscribed, 285
@subscribe-quick, 285
@suggestion, 285
@sweep, 14, 32, 285
@teleport. See @move
@tell-filter, 286

@tutorial, 9, 286
@typo, 286
@unban, 286
@undefine, 286
@ungag, 286
@ungag-site, 287
@unlock, 31, 287
@unmessage, 287
@unread, 287
@unrefuse, 31, 287
@unrmmail, 287
@unsend, 287
@unset-tell-filter-hook, 288
@unsubscribe, 288
@unsubscribed, 288
@unsubscribed-quick, 288
@uptime, 288
@users, 288
@verb, 45, 103, 104, 288
@verbs, 288
@verify-owned, 283
@version, 288
@watch, 289
@ways, 45, 289
@web, 289
@whereis, 289
@who, 289
@will, 290
@witness, 290, 313
@wizards, 290
@wrap, 8, 290
* 1 =>" construct, 158
+, 292
+c property permission flag, 165
<> 2
abbreviations, conversational typing,
255
Abraxas, 323
abstract, 331, 342, 344
accept vs. acceptable, 146
accountability, 305
active, 333, 381
Adventure, 25, 37
age
determining a player's MOO-age,
261
officia (LambdaM OQO), 261
Aglaia, 383
Aladdin, 179

Index 389

mailto:@rmfeature
mailto:@move

alias, 243
adding an adias to your MOO
character, 16
ancestors (of an object), 38
ancestry, 82
AndroidLust, 379
Angharad, 335
angle brackets, usage, 2
anj, 339
annoyances, countering, 29
antisocial feature object, 218
ARB, 91, 190, 235, 243, 261, 304, 305,
311, 314, 315, 323, 328, 331, 350,
351
members
listing, 261
term limits, 320
arbitration system, LambdaM OO, 233,
308, 311, 319, 321, 324, 325, 326,
328, 329, 330, 331, 332, 334, 335,
339, 340, 344, 346, 347, 348, 351,
354, 362, 364, 367, 369
Architecture Review Board. SeeARB
args, built-in variable, 145, 159
argstr, built-in variable, 159
argument list, 106
argument specifiers, 102, 104, 112,
163, 164, 243, 244, 288
changing the argument specifiers for
an exisiting verb, 261
arguments, 102, 114, 243
Artbag, 337
articles, usually omitted, 23
assignment, scattering, 160
asterisk, 259
in verb names, 109
to designate amailing list, 38
audit. See @audit
Avenger, 334, 340
awareness, general, 32
background task, 102, 132, 162, 163,
244, 253, 255, 272
backspace, with raw telnet, 7
balloons
hot air, 200
ballots, 327. See also petition and
ballot system
LambdaM OO
compendium of, 311

390 Index

listing, 262
banning someone from rooms you
own, 34
Barth, 11
Bartlebooth, 24, 189, 194, 200, 201,
203, 212
bash, 244
basic communications, 9
Bats!, 329, 336
Bear(tm), 368
Béchamel Sauce, 257
behavioral norms, 36
Benny, 382
Big Brother (or someone else) may be
watching you, 32
Bits, 115
Blissboi, 382
Blob, 178
Bond-007, 356
Boo, 12, 218
Boonton, 339, 365, 378, 382
boring, 262
bot, 244
Brack, 334, 337, 350
bug(s)
reporting, 262
bugging, 32. Seealso @sweep
of conversations, 14
building, 79, 90
overview, 79
build-options, 89
built-in
function (defined), 244
functions, 168
variables, 159
byte, 245
byte-based quota, 90, 314
Cable, 328, 348, 354
call, 245
caller
built-in variable, 159
camouflaging a room or object's
contents, 98
cARROT, 195, 200, 211, 321, 336, 346
channels, 13, 245
on LambdaM OO, 225
character, 245
requesting, 14
child. See parent

mailto:@audit
mailto:@sweep

chocolate soufflé, 257
Choppiel, 362
chparent. See @chparent
Chris-22, 331, 335
class, 245
client program
if you don't have one, 8
switching from raw telnet to, 8
client programs, 7
cobot, 382
command, 101, 245
command line, 245
command-line verbs, 105
commas, in names and aliases, 111
communication, recording, 13
communications, basic, 9
community, 303, 305
expectations, 9
compass directions
moving, 25
compound statements, 161
connect, 264
connected (room), 245
connecting to aM OO, basics, 7
container room, 26
containment hierarchy, 246
contents. See also @contents
:contents verb vs .contents property,
99, 100
of an object, 37, 39, 88, 98, 245
conventions of acceptable behavior, 28
conversational typing abbreviations,
255
conversations, coping in a crowded
room, 11
copyright, of communication that
occursinreal time, 14
core, 246
core database. See also LambdaCore
defined, 101, 246
crayon, 333
create. See @create
creating rooms and other objects, 79
ctype
property of $room
examples, 86
cultural and behavioral norms, 36
Curtis, Pavel, 104
customizing objects, 86

customs, 28
darkrider, 332, 339
Darkson, 345, 354, 360
data types, 105, 156, 246
database, 2, 101, 246
changing
as opposed to generating text with
the emote command, 11
size, 265
Dave, 325
decline
(aLambdaM OO petition), 265
defense mechanisms, 29
deLaMer, 369, 371, 376, 377
describe. See @describe
describing yourself, 16, 17
detailed rooms, 24
dig. See@dig
directed say, 11
discipline problems, 304
disconnecting from aM OO, 9
display. See @display
dispute system
q IBambdaM OO0. Searbitration system
ob)
built-in variable, 148, 159
dobjstr, 120
built-in variable, 159
Dodger, 315
doing vs. emoting, 10
Doug, 27, 196
Downtime, 365
dr, 316
Dred, 208, 314
Drippy, 57, 361
due diligence, 82
dynamic allocation (of variables), 105
e 3
edd, 313
editors
aborting an editing session, 68
deleting text, 74
ending an editing session, 68
entering text, 69
importing text from another source
on the MOO (yank), 70
insertion point, 66
finding and moving, 68
invoking, 67

Index 391

mailto:@chparent
mailto:@contents
mailto:@create
mailto:@describe
mailto:@dig
mailto:@display

listing text, 68
mi scellaneous commands, 75
modifying existing text, 71
moving text, 73
options, 76
searching for text (find), 75
using, how to, 66
Edweirdo, 346
eep, 218
ar, 3
ers, 3
gect. See @gject
Elayne, 380
em, 3
emacs with mud.el, client program, 7
email
changing your registration email
address. See @registerme
emote, 10, 11
remote-emote, 13
emself, 3
EnCore, 246
eprint, 268
ERR, datatype, 158
error, trapping, 158
etiquette
teleporting into a private room, 28
Etoile, 369
Euphistopheles, 321
eval, 45, 164
Evil, 359
examine, 268
command, introduced, 23
contrasted with @examine, 109
customizing the list of obvious
verbs, 119
exit, 246
exit messages, 94, 96
exits
attaching an exit owned by someone
else, 85
creating with @dig, 85
finding available exits from a room,
25
seeing what exits are available
in/from aroom. See @ways
expectations
cultural/behavioral, 9, 36
exploring, 22

392 Index

expression
regular, 267
expressions, 106, 161, 164, 246, 251
Farcan, 351, 365, 374
feature objects, 41
adding a feature object, 42
LambdaM OO, 217
antisocial feature object, 218
APHID’s socializing feature object,
219
Carrot’s social interaction feature,
223
Carrot’ s viewing feature, 224
Compass Rosette FO, 224
dancing feature object, 220
fast & dangerous Info FO, 221
KarmaFO, 224
LambdaM OO museum search FO,
224
login watcher, 220
Mazer’ s object utilities FO, 224
M ulti-communications feature,
225
Obvious feature object, 224
Pasting FO, 225
Quota-Transferral feature, 225
social verb core, 218
stage-talk feature, 217
programming, 167
removing afeature object, 43
sequence maitters, 42
fertile, 83, 90, 246
fiat, wizard (LambdaM OO), 234, 307
fifel, 382
fifelfoo, 370
Fionaa, 376
flag, 103, 247
FLOAT, datatype, 156
follow (another player), 269
Foobies, 320, 321, 322, 324
food fights
opting out, 262
Ford, 306
foreground task, 101, 102, 163, 244,
247, 253. See also background task
fork bomb, 247
forked task, defined, 247
forked tasks
listing, 269

mailto:@eject
mailto:@registerme
mailto:@examine
mailto:@dig
mailto:@ways

Frand, 303
Frand' s player class, commands, 45
Fred_astaire, 361
Fuel, 360
functions
built-in, 168
built-in (defined), 244
Gabaldon, 383
gag, 247. See @gag
game master, 247
Gary, 325, 360, 364
Gary_Severn, 214, 303
Gear, 373
Gemba, 303
gender, 2. See @gender
agreement, in exit messages, 97
presenting, 18
pronouns, 17
specifying your MOO character's
gender, 17
gender-neutral pronouns, 3
general awareness, 32
generic, 247
generic builder commands, 45
generic mail receiving player
commands, 45
generic objects, 79, 81
generic player commands, 45
generic programmer commands, 45
genna, 189
Geust, 306
ghond, 303
GhostDruid, 379
Gilmore, 331, 341, 359, 360, 374
global variables, 105
glossary of terms, 243
go
command, 26, 271
GothGrrl, 344
graeme, 381
Grand_Master, 247
Greene, 201
greetings
unexpected, 19
GrendelFish, 335
GreyDruid, 377
Griffen, 341
GrinchDruid, 383
gru, 188, 194, 197, 334

Grump, 311
Gryndel, 323
guest
connecting as, 7
guests
booting off the system, 316
gurst, 247
Haakon, 233, 303, 306, 307, 308, 309,
340, 359
habibi_with_wild rice, 384
Hagbard, 312
Hannibal, 379
harassment, 35
Harry_Potter, 370
heartbeat, 271
help, 45, 271
online, 8
help manners. See manners
help text
adding help text to an object, 118
Hepper, 383
heyoka, 374
hhsbh, 376, 378
Hibernian, 343, 345, 372
hiccup, 383
hidden treasures, 166
Hobgoblin, 372
Holgate, 363
home, 45, 271
creating a home for yourself, 18
designating a room as your home,
18

going home, 19
letting someone €else designate a
room you own as eir home, 18
Hookleg, 338, 352
hot air balloons, 200
HumbertHumbert, 326, 334, 340
idle, 247
Indite, 337
Individual, 318
inherited properties, 81
input, 247
insertion point
in MOO editors, 66
INT, datatype, 156
integrating room, 24
integration
advantages and disadvantages, 99

Index 393

mailto:@gag
mailto:@gender

room, 94
invalid, 247
invalid objects, 37
inventory, 80, 248, 271
invoke, 248
iobj
built-in variable, 148, 160
iobjstr, 131
built-in variable, 160
Jack, 253
Jacobson, David, 14
jaime, 322, 326, 342, 343, 384
Jaybird, 362, 365, 367, 368, 371
Jayturkey, 361
Jerri_Blank, 383
JHCore, 45, 246
Jill, 253
JoeFeedback, 306
JohnBoy, 328, 354, 367
Johns, 358
join. See@join
Jon_BonJarleycorn, 197
Jool, 197
journalists, at LambdaM OO, 343
judicial review board
LambdaM OO (failed ballot), 333
Karma, 206
kids. See also parent. See @kids
Kilik, 187, 321, 326, 327, 343
Kirlan, 218
Klaatu, 13, 30, 38, 115, 200, 218, 229,
230, 367
Kobot, 381
Krate, 370
Lady-Dawn, 370
lag, 248
$login.current_lag, 163
@addlag (command), 260
@rmlag (command), 282
effect on @paste, 225
Lag Reduction FO of Godlike
Powers, 129
Lambda, 306, 317
LambdaCore, 2, 13, 27, 34, 45, 47, 66,
82, 162, 170, 173, 217, 225, 226,
237, 246, 248, 259, 269, 288, 289,
290, 303, 308
LambdaM OO, 2
arbitration. See arbitration system

394 Index

elected offices, 235
feature objects, 217
Guide to Interesting Places, 175
petition system
2/3 mgjority, 235
creating a petition, 239
elected offices, 235
eligibility requirements, 235
historical overview, 233
how to participate, 237
nomination petitions, 241
opting out, 234
petition options, 238
signature thresholds, 235
time Ilimits for petitions and
ballots, 235
vetting criteria, 236
political system, 232
registration policy, 14
RPG (Role Playing Game). SeeRPG
Takes a New Direction, 234, 303,
307, 308, 340
Takes Another Direction, 234, 307,
349, 353, 373
VR étlas, 25
LambdaMOO Programmer’s Manual, 104
Lamont_Cranston, 202
legba, 316
Legion, 369
Li2CO3, 349
lights, 371
limbo. See $limbo
line breaks
inverbs, 110
Linnea, 317
LIST, 248
datatype, 157
listening devices. See @sweep
literals, 112
local variables, 105
lock. See @lock. See @lock
log files, 14
logging, 32
login watcher (feature object), 220
login watchers, 19
look detection, 17
look _msg, 98
look_self, 99
looking around, 22

mailto:@join
mailto:@kids
mailto:@paste
mailto:@sweep
mailto:@lock
mailto:@lock

looping, 162
loree, 353
lose, 273
lovecraft, 57
LTAD, 234, 307, 349, 353, 373
LTAND, 234, 303, 307, 308, 340
lurk, 248
Mack-the-Knife, 340
mail
@read and @peek, 55
aborting an editing session if you
change your mind about sending
mail, 59
automatically forwarding mail to
your email address, 63
checking for new messages, 52
current folder, 52
current message, 52
customizing aspects of the mail
system, 59
folder, 52
list, topic description, 52
message headers, 54
message sequences, 54
options, 59
reading, 51
reading a MOOmail list, 51
reading all new mal a once
(@ranm), 52
recipient, 51
removing messages (@rmm), 56
renumbering messages, 56
searching MOOmail lists, 54
seeing what MOOmail lists exist, 52
sending, 57
skipping unread messages, 56
subscribing to a MOOmail list, 52
using the mail editor (basic), 57
mail options, 59
listing, 60
modifying, 61
mailing lists, 38, 51
creating, 93
manners, 9, 22, 28, 48, 233, 304, 305,
313, 317, 319, 328, 329, 334, 345,
364, 367, 369. See also help manners
map, 25
matching, 102, 248
mav, 249

measuring an object. See @measure
Mediocrity, 378
Melki, 375
message
property, defined, 46
message sequences, 54
messages. See @messages
setting, 46
meta-VR, 1, 2, 25, 88, 94, 243, 249
Mickey, 312, 319, 322, 323, 330, 332,
338, 340
Miles, 324
mingaloid, 371
mockturtle, 42, 248
MOO
definition, 1
M OObash, 244
MOOQOer of the Month, 320
MOOQicide, 357, 363
MOOmail
reading, 51
MOOs
finding. See Rachd's Super MOO
List
MOQOsex, 35
Mooshie, 350, 355
Moriah, 312
morph, 249
Morpheus, 26
moving around, 25
walking vs teleporting, 25
Mr_Bungle, 233
MUD, 37
Object Oriented, 37
MUDDwéeller, 7
MugWump, 355
multiple characters, 249
multi-room, 186
multi-tasking, 249
multi-user environment
draws and drawbacks, 28
murmur, 275
Musketeer, 371
MutantNemesis, 359
Naked Guest, 330
name
changing the name of your MOO
character, 16
Nancy, 317

Index 395

mailto:@peek
mailto:@ranm
mailto:@rmm
mailto:@measure
mailto:@messages

New-Player-11164, 347
news, 8, 275
newt, 249
Nim, 12, 219, 229
noise abatement, 29
nonsenso, 360
non-VR, 1, 25, 249. See also meta-VR
norms
cultural and behavioral, 36
nosiness, 32
Nosredna, 254, 306
notabird, 346
note editor, 57. See @notedit
null object, 153
NUM
data type, 156
Nuveena, 356, 366
O.M.I.N., 361
OBJ, datatype, 156
object, 249
ancestry, 82
hierarchy, 37, 83
measurement task, 91
number, 37
objects, 1, 2, 37
brief introduction, 21
contents, 37, 39, 88, 98, 245. Seealso
@contents

creating a new object, 38. See also

@dig. Seealso @create
customizing, 86
feature objects, 41
fertile, 83, 90, 246
generic, 81

getting rid of unwanted objects

_ (@gject), 40 _ _ _

identifying interactive objects in
your vicinity, 23

invalid, 37

location, 38

measuring, 91

moving, 38

parent hierarchy, 43

parent objects (ancestors), 38

parenthood, 37

referring to by number or by name,

root object, 37
seeing alist of objects you own, 38

396 Index

teleporting, 40
unmeasured, 91
valid, 37

ObsessionRose, 382
obvious verbs, 23

customizing, for examine, 120

official age

(LambdaM 0O), 261

operators, 160
options package, 53, 249

defined, 59

outing, 36
output, 101, 250
ownership

and permissions, 165

Ox, 316, 358

P7A77, 341

page, 12, 276
parameters, 250
paranoid. See @paranoid
parent, 250

changing the parent of an object,
86, 264

parent hierarchy, 43
parents. See @parents
parser, 41, 102, 250
parsing, 41

party, 277

password

changing, 15. See @password

PatGently, 313, 326, 327

pens, 358
Peri, 343, 348, 357, 358, 360
permission flags
changing, 263
object, 90, 266
property, 103, 278
verb, 104, 168, 288
permissions
error (E_PERM), 165
ownership and, 165
task, 165
petition and ballot system
(LambdaM O0O), 226, 232, 250, 252,
253, 261, 265, 274, 277, 278, 279,
280, 307, 308, 309, 311, 312, 314,
317, 319, 320, 322, 323, 324, 325,
326, 327, 328, 329, 331, 333, 335,
338, 339, 340, 347, 350, 351, 355,

mailto:@notedit
mailto:@create
mailto:@eject
mailto:@paranoid
mailto:@parents
mailto:@password

358, 360, 362, 365, 366, 367, 368,
372, 373, 374, 375, 376, 379, 380,
381
Phalin, 383
Pictwe, 352
PKelly, 383
Plaid_Guest, 217
player, 250
built-in variable, 112, 159
player class, 250
player class owners
powers, 44
player classes, 43
Frand's player class, 45
generic builder, 45
generic mail receiving player, 45
generic player, 45
generic programmer, 45
LambdaM OO, 226
Detailed Player Class, 232
Experimental Guinea Pig Class
with Even More Features of
Dubious Utility, 228
Generic LambdaM OO Citizen, 226
Generic Player Class With
Additional Features of Dubious
Utility, 227
Generic Super_Huh Player, 231
Politically Correct Featureful
Player Class Created Because
Nobody Would @Copy Verbs To
8855, 230
SSPC, 232
Super-Schmoo, 232
player object, 250
player-character, 250
players, 1
port, 250
port number, 7
portable room, 26
POSV, 370
Power Elite (LambdaM OO), 196
prepstr
built-in variable, 160
primary character, 235, 250, 252, 320,
347, 369, 379. See also secondary
character
privacy, 31
player class owners and, 44

which MOOmail lists you read, 51
Profane, 336, 342, 346, 349, 351
program, 251
programmer, 251
programmer bit, 108, 305

obtaining, 45
Programmer’ s Manual

(by Pavel Curtis)

available viaftp, 109
programming
concise reference, 156
tutorial, 108
pronoun substitutions, 115
pronouns
gender, 17
Spivak, 3
proper conduct
disagreements about, 304
property, 2, 101. Seealso $object_utils.
See also @show. See also @property.
See also @dump. See also @display
+c permission flag, 165
adding a new property to an object,
103

changing 'c permissions on
descendants of an object you own,
165

changing with @set, 284

defined, 251

defined vsinherited, 93

displaying a list of an object's

properties, 127
displaying an object's inherited
properties, 142
dynamic access, 159
edit, 68
editor (@pedit), 228, 277
inherited, 43, 81, 86
measuring a property's size, 92
message, 46, 88
not found (error) E_PROPNF, 158
ownership, 165
ownership of inherited properties,
165

permission flags, 263

quota required to add a property to
an object, 90

removing a property from an object.
See @rmproperty

Index 397

mailto:@Copy
mailto:@show
mailto:@property
mailto:@dump
mailto:@display
mailto:@set
mailto:@pedit
mailto:@rmproperty

viewing with eval, 291
psign_*p:ctr, 349
Pueblo, 7
Puff, 313
pupa, 379
puppet, 251
pupuck, 383
Quadric, 362
Quantum-Vacuum, 314
QUARTIlow, 329, 342, 350, 363
queue, 103, 251
Quiet, 352
Qui-Gon_Jinn, 369
Quinn, 312, 320, 325, 337, 357
QuinnGrrl, 363
quit
disconnecting from a MOO, 9. See
also @quit
quota, 329. Seealso ARB
byte-based, 90, 314
defined, 90
displaying amounts. See @quota
getting more, 91
measuring, 274
policy (LambdaM OO), 372
things to do if you are over quota,
91
transfer (LambdaMOO), 225, 316,
337, 339, 369
Rachel’s Super MOO List, 8
RAM
random access memory, 13
rape, 317, 318
Rat, 327, 345
raw telnet, 7
reading mail, 51
reapers, 348. Seealso @reapers
reaping
(LambdaM OO), 358
reaping (LambdaM OOQ), 222, 251, 254,
316, 357
defined, 251
eligibility requirements to be a
reaper, 235
timing, 356
recreate. See @recreate
recycle. See @recycle
RedFeather, 352
refuse. See @refuse

398 Index

registrars. See @registrars
regular expression, 267
remote-emote, 13
requesting a MOO character, 8, 14. See
also @request
LambdaM OO
checking your status on the
waitlist, 15
researchers
at LambdaM OO, 343
resource limit exceeded
when trying to create a new object,
92
response latency, 251
return value, 251
RinkRabbit, 380
risk
associated with adding a player
class, 45
Road _Dog, 206
robot, 244
Roebare, 368
Rog, 333
room, 251
container, 26
detailed, 24
integrating, 24
portable, 26
remembering a room's object
number, 27
room integration, 94
rooms
connected, 26
creating with @dig, 84
dark, 99
rooms database, 28, 251
root object, 37
RPG
LambdaM OO Role Playing Game,
184, 209, 212, 252
game masters, 226, 247, 270
Grand_Master, 247
rules, 9, 29, 304
Russian roulette pistol
LambdaM OO, 203
RussianMob, 380
Sabastian, 383
Sage, 367
say

mailto:@quit
mailto:@reapers
mailto:@recreate
mailto:@recycle
mailto:@refuse
mailto:@registrars
mailto:@request
mailto:@dig

double quote abbreviation, 10
Scarab, 356
scattering assignment, 160
Schmoo, 231
searching
mailing lists, 54
secondary character, 250, 252, 319,
320, 347, 369, 375, 376, 377, 379.
See also primary character
illegal, 375
seek, 283
Selma, 363
sending mail, 57
server, 2, 41, 101, 252
set. See @set
setting messages, 46
sexual advances, 35
sexual harassment, 318
Shalmaneser, 351, 356
shard, 370
Shimizu, 373
Shmool, 39
shouting, 29, 252
shutdown
built-in command, 170
LambdaM OO ballot, 234, 309, 311,
352, 353, 362, 365, 373
side effect, 106, 252
silent teleporting, 46
silly moustaches, 353
skeptopotamus, 57
Slartibartfast, 306
Sleeper, 344, 362, 364, 366
snarl, 374
social pressure
on player class owners, not to spy,
44

social security
LambdaM OO, 356
social verb core (feature object), 218
soufflé, chocolate, 257
soup, 366, 377
spam, 252
spamming, 29
Spivak
(LambdaM OO player), 373, 381
Michael, 3
pronouns, 3
spoofing, 30, 228

defined, 252
spying, 14
stage-talk feature, 217
Stetson, 318, 323, 332, 347, 381
stop-following, 285
STR
data type, 156
string, 253
subroutine, 105, 115
subscribing to aMOOmail list, 52
subscripting, 158
Sunny, 319, 321, 324, 328, 336, 338,
341, 351, 375
sweep. See @sweep
syntax, 253
syntax specification for commands,
259
system, 253
system character, 253
Tapu, 329, 362
Tartan_Guest, 13, 220
task, 101, 102, 253
background, 102, 244
foreground, 102, 247
forked, 247
permissions, 165
task_id, 103
Tchinek, 335
teleport, 26, 253
silent teleporting, 46
tell_contents, 99
tell-filter, 253
telnet, 7. See also @wrap
terminate, 106
text
generating text as opposed to
changing the database, 11
unattributed (tracing), 30
The Walrus, 212
theft, 33
prevention, 33
theme, 1, 22
themely transition, 178, 189, 206, 207
this
built-in variable, 148, 159
this (built-in variable), 140
ticks, 162, 254
tiny scenery, 99, 196, 200, 254
tkMOO, 7

Index 399

mailto:@set
mailto:@sweep
mailto:@wrap

TMFKAN®64, 357, 359, 366
toad, 254
toad scar, 254
Tomb of the Unknown M OOQers, 204
Topher, 327
Tower, 55
treasures
hidden, 166
Trees Beatnik, 324
trespass, 33
tricks of the (programming) trade, 167
troll, 254
trust
player class owners, 44
truth values, 161
try/except/endtry construct, 158
TunaJesus, 348
tutorial. Seealso @tutoria
LambdaM OO, 383
programming (Yib's Pet Rock), 108
yduJ's Wind-up Duck, 109, 207
typing abbreviations
conversational, 255
typist, 1, 254
unattributed text, 252
tracing, 30
unexpected greetings, 19
unfollow, 286
unmeasured objects, 91
user, 254
user-extensible, 2, 41
Uther_L ocksley, 339, 344, 348
Uther_O’Locksley, 353
Utterly Lame, 375
valid, 254
variable, 159. See also flag. Seealso data
types
built-in variables, 105, 159
defined, 105, 255
global, 105
local, 105. See also @setenv
verb, 23
adding a verb to an object, 288
built-in variable, 159
copying a verb from one object to
another, 265
defined, 101, 255
displaying averb on an object, 127

400 Index

displaying inherited verbs on an
object, 267
dynamic access, 159
editor, 57
inherited, 43
introduced, 2
measuring averb's size, 92
not found (error) E_VERBNF, 158
obvious verbs on an object, 111
ownership, 165
removing from an object. See
@rmverb
Veren, 57
vetting petitions (LambdaM OO), 307
Vida Blue, 345
virtual reality, 1, 25, 243
breaking, 25
Vorial, 375
VR, 25, 255. Seealso virtual reality
actions, 243
waffle, 176, 207
Warhol, 374
ways, 289
Werebull, 16, 27, 67, 220, 252
wheel, 255
whisper, 12, 289
wiffle bats, 332
Wintermute, 188, 199
wizard, 255
wizards, 303, 304, 305, 306, 307, 308,
309
fiat (LambdaM OO), 234, 307
listing, 290
powers, 33, 44, 51, 57, 104, 163,
235, 247, 249, 250, 254, 255, 260,
269, 275, 278, 282, 286, 343
WriTinG, 341, 368
X’iina, 322
Xia, 355
Xiombarg, 311
xmath, 368, 377
Xorbon, 193
Xythian, 189, 315
ydud, 109, 194, 207, 306, 314, 384
Yib
arriving in a shower of sparks, 46
ballots by, 331, 333, 359, 364, 376,
380
begins her career as a bugbear, 189

mailto:@tutorial
mailto:@setenv

dancing with Werebull, 220 ZenWombat, 356
lifting an elephant, 11 Zork, 25, 37, 208

Index 401

